Магнитные цепи, их характеристика. Расчет магнитных цепей.
Магнитная цепь – это совокупность устройств, содержащих ферримагнитные тела и образующих замкнутую систему, в которой существует магнитный поток, и вдоль которой замыкаются линии магнитной индукции.
Магнитное поле характеризуется 3 векторами:
1) В (индукции) –характеризует силовое действие магнитного поля на ток по закону Ампера.
2) М – (намагниченность) – равен магнитному моменту еденицы объема вещества.
3) Н (напряженность) – (В/ ) – М
= 4 10-7 Гн/м
= Н
-
При расчете магнитной цепи основными величинами характеризующими магнитные цепи являются
Ф =
F = iw; w – количество витков
F = МДС
В основе расчета магнитных цепей лежит:
1) Закон непрерывности линии магнитной индукции
= 0
Или при охвате поверхности нескольких сечений магнитопровода
=0 можно записать = 0
Сумма магнитных потоков сходящихся в узле равна нулю.
2) Закон полного тока
3) = =
Этот закон аналогичен 2 закону кирхгофа для электрических цепей
Um = = =
Rm = = = = – магнитное сопротивление
28. Конструкция, назначение и принцип действия трансформатора. Режимы работы трансформатора.1.1. Назначение и области применения
Трансформатором называют статическое электромагнитное устройство, имеющее две или большее число индуктивно-связанных обмоток и предназначенное для преобразования посредством электромагнитной индукции одной (первичной) системы переменного тока в другую (вторичную) систему переменного тока. Трансформаторы широко используются в промышленности и быту для различных целей.
1. Для передачи и распределения электрической энергии.
Обычно на электростанциях генераторы переменного тока вырабатывают электрическую энергию при напряжении 6-24 кВ, а передавать электроэнергию на дальние расстояния выгодно при значительно больших напряжениях (110, 220, 330, 400, 500, и 750 кВ). Поэтому на каждой электростанции устанавливают трансформаторы, осуществляющие повышение напряжения.
Распределение электрической энергии между промышленными предприятиями, населёнными пунктами, в городах и сельских местностях, а также внутри промышленных предприятий производится по воздушным и кабельным линиям, при напряжении 220, 110, 35, 20, 10 и 6 кВ. Следовательно, во всех распределительных узлах должны быть установлены трансформаторы, понижающие напряжение до величины 220, 380 и 660 В (рис. 1.1)
Рис. 1.1
2. Для обеспечения нужной схемы включения вентилей в преобразовательных устройствах и согласования напряжения на выходе и входе преобразователя. Трансформаторы, применяемые для этих целей, называются преобразовательными.
3. Для различных технологических целей: сварки (сварочные трансформаторы), питания электротермических установок (электропечные трансформаторы) и др.
4. Для питания различных цепей радиоаппаратуры, электронной аппаратуры, устройств связи и автоматики, электробытовых приборов, для разделения электрических цепей различных элементов указанных устройств, для согласования напряжения и пр.
5. Для включения электроизмерительных приборов и некоторых аппаратов (реле и др.) в электрические цепи высокого напряжения или же в цепи, по которым проходят большие токи, с целью расширения пределов измерения и обеспечения электробезопастности. Трансформаторы, применяемые для этих целей, называются измерительными.
Классификацию трансформаторов можно произвести по нескольким признакам:
1. По назначению трансформаторы разделяют на силовые общего и специального применения. Силовые трансформаторы общего применения используются в линиях передачи и распределения электроэнергии. Для режима их работы характерна частота переменного тока 50 Гц и очень малые отклонения первичного и вторичного напряжений от номинальных значений. К трансформаторам специального назначения относятся силовые специальные (печные, выпрямительные, сварочные, радиотрансформаторы), измерительные и испытательные трансформаторы, трансформаторы для преобразования числа фаз, формы кривой ЭДС, частоты и т.д.
2. По виду охлаждения – с воздушным (сухие трансформаторы) и масляным (масляные трансформаторы) охлаждением.
3. По числу фаз на первичной стороне – однофазные и трёхфазные.
4. По форме магнитопровода – стержневые, броневые, тороидальные.
5. По числу обмоток на фазу – двухобмоточные, трёхобмоточные, многообмоточные (более трёх обмоток).
6. По конструкции обмоток – с концентрическими и чередующимися (дисковыми) обмотками.
Дата добавления: 2015-01-29; просмотров: 1853;