Идеализированный трансформатор. Для выяснения сущности физических процессов, происходящих в трансформаторе, рассмотрим идеализированный трансформатор
Для выяснения сущности физических процессов, происходящих в трансформаторе, рассмотрим идеализированный трансформатор, у которого магнитный поток Ф полностью замыкается по стальному магнитопроводу и сцеплен с обеими обмотками, а потери в стали отсутствуют. К первичной обмотке трансформатора (рис. 1.6, а) подводится синусоидальное напряжение , благодаря чему по этой обмотке проходит переменный ток, создающий переменный магнитный поток. Переменный поток наводит в обмотках трансформатора ЭДС
; .
В режиме холостого хода цепь вторичной обмотки разомкнута и ток i2=0. При этом для контура первичной обмотки трансформатора
(1.6)
,
где: u1 – мгновенное значение приложенного к первичной обмотке напряжения.
Уравнение (1.6) справедливо, если принять, что не только i2=0, но и отсутствуют потери в стали магнитопровода (от вихревых токов и гистерезиса); иначе эти потери должны были бы учитываться в виде потерь от тока, проходящего по замкнутой накоротко вторичной обмотке с большим активны сопротивлением.
Вводя в формулу (1.6) значение ЭДС , индуцируемой в первичной обмотке переменным магнитным потоком, и пренебрегая падением напряжения в активном сопротивлении первичной обмотки i1R1 из-за его малости, получаем
(1.7)
u1 + e1 = 0,
т.е. напряжение, приложенной к первичной обмотке, практически полностью уравновешивается индуцированной в этой обмотке ЭДС.
Рис. 1.6
Если питающее напряжение u1 – изменяется по синусоидальному закону , то магнитный поток также изменяется синусоидально, отставая по фазе от приложенного напряжения на угол 90°,
.
Можно показать, что постоянная интегрирования в установившемся режиме С=0.
Связь между ЭДС и магнитным потоком определяется из уравнения
,
и выражается для амплитудного значения ЭДС формулой или для действующего значения формулой
(1.8)
.
Учитывая синусоидальный характер изменения напряжения u1 и ЭДС e1, уравнение (1.7) можно представить в комплексной форме:
(1.9)
.
Уравнение (1.9) справедливо для идеализированного трансформатора, в котором пренебрежимо мало активное сопротивление обмоток и отсутствуют потери в стали магнитопровода. Однако, несмотря на принятые допущения, оно правильно определяет сущность качественных процессов, происходящих в трансформаторе, и поэтому является одним из фундаментальных в теории электрических машин. Количественные ошибки, вызванные идеализацией трансформатора, можно всегда довольно легко подсчитать.
Предположив, что насыщение в стали трансформатора отсутствует и весь магнитный поток замыкается по стальному магнитопроводу, можно считать ток первичной обмотки идеализированного трансформатора прямо пропорциональным магнитному потоку. В связи с этим, на векторной диаграмме идеализированного трансформатора в режиме холостого хода (рис 1.6 ,б) ток холостого хода Í10 изображён вектором, совпадающий по направлению с вектором магнитного потока. . На этой же диаграмме векторы ЭДС É1 и напряжения Ú1 показаны в противофазе в соответствии с уравнением (1.9), а вектор магнитного потока опережает вектор ЭДС на 90°. Поскольку магнитный поток не имеет действующего значения, на диаграмме показано его амплитудное значение. Там же показан вектор ЭДС É2 совпадающий по фазе с вектором É1, так как ЭДС É2 индуцируется тем же самым магнитным потоком, что и É1, и может быть определена по формуле
(1.10)
.
При работе под нагрузкой для первичной обмотки идеализированного трансформатора можно написать уравнение
,
где: Ф1 и Ф2 – потоки, создаваемые токами первичной и вторичной обмоток.
Обозначая, как и при холостом ходе, , получаем
u1 + e1 = 0,
т.е. такое же соотношение, что и при холостом ходе. Очевидно, если первичное напряжение при нагрузке идеализированного трансформатора остаётся неизменным, то величина ЭДС е1 такая же, как и при холостом ходе. Следовательно, результирующий поток при нагрузке равен потоку при холостом ходе:
Ф1 + Ф2 = Ф0,
или в комплексной форме
(1.11)
.
Неизменность магнитного потока при переходе от режима холостого хода к режиму нагрузки является важнейшем свойством трансформатора. Из этого свойства следует закон равновесия магнитодвижущих сил (МДС) в трансформаторе:
(1.12)
,
где: F1 и F2 – МДС, создаваемые первичной и вторичной обмотками трансформатора при нагрузке;
F10 – МДС, создаваемая первичной обмоткой при холостом ходе.
При переменном токе оперируют с амплитудами МДС; при этом из (1.12) следует, что
(1.13)
или
.
Для наглядности уравнение (1.13) можно представить иначе:
(1.14)
,
где: - нагрузочная составляющая тока первичной обмотки (приведенный ток нагрузки).
Таким образом, МДС, создаваемая током I'2 равна по величине и противоположна по фазе МДС вторичной обмотки, т.е. компенсирует МДС вторичной обмотки. Это обуславливает неизменность магнитного потока трансформатора. Векторная диаграмма идеализированного трансформатора, работающего с нагрузкой, показана на (рис. 1.6, в). Мощность нагрузочной составляющей первичного тока равна мощности, отдаваемой трансформатором нагрузке, так как
.
Следовательно, нагрузочная составляющая тока I1 не только уравновешивает МДС вторичной обмотками, но и обеспечивает поступление в трансформатор из сети мощности, отдаваемой приёмнику электрической энергии, подключённому к вторичной обмотке.
Основные закономерности работы идеализированного трансформатора справедливы и для реальных трансформаторов.
Дата добавления: 2015-01-29; просмотров: 1074;