Яркостная температура
Яркостной температурой Тя некоторого теланазывается температура абсолютно чёрного тела, при которой его спектральная плотность энергетической светимости r(λ,T) для какой либо определённой длины волны равна спектральной плотности энергетической светимости rТ(λ,Т) данного тела для той же длины волны.
Так как для нечерного тела спектральная плотность энергетической светимости при определенной температуре будет всегда ниже чем у абсолютно черного тела, то истинная температура тела будет всегда выше яркостной.
В качестве яркостного пирометра широко используется пирометр с исчезающей нитью. Принцип определения температуры основан на визуальном сравнении яркости раскаленной нити лампы пирометра с яркостью изображения исследуемого объекта. Равенство яркостей, наблюдаемое через монохроматический светофильтр (обычно измерения проводят на длине волны λ=660 нм), определяется по исчезновению изображения нити пирометрической лампы на фоне изображения раскаленного объекта. Накал нити лампы пирометра регулируется реостатом, а температура нити определяется по градуировочному графику, или таблице. Если температура нити высока, то для ослабления потока излучения применяется также и нейтральный светофильтр.
Пусть мы в результате измерений получили равенство яркостей нити пирометра и исследуемого объекта и по графику определили температуру нити пирометра Т1. Тогда, на основании формулы (3) можно записать:
f (λ,T1) α1(λ,T1) = f (λ ,T2) α2( λ, T2 ) (20)
где α1(λ,T1) и α2(λ,T2) коэффициенты монохроматического поглощения материала нити пирометра и исследуемого объекта соответственно;
T1 и T2 – температуры нити пирометра и объекта.
Как видно из (20), равенство температур объекта и нити пирометра будут наблюдаться только тогда, когда будут, равны их коэффициенты монохроматического поглощения в наблюдаемой области спектра α1(λ,T1)=α2(λ,T2). Если α1(λ,T1)>α2(λ,T2), мы получим заниженное значение температуры объекта, при обратном соотношении - завышенное значение температуры.
4. Определение постоянной Стефана-Больцмана с помощью оптического пирометра
Для реальных (не черных, в том числе и серых) тел на основании закона Стефана-Больцмана можно определить мощность излучения во всем интервале длин волн W:
W = α(Т) S σТ4 (21)
где S – площадь поверхности нагретого тела;
αТ –коэффициент черноты реального тела. Он равен отношению энергетической светимости данного реального тела к энергетической светимости абсолютно черного тела при той же температуре. Данный коэффициент представляет интегральный (по всем длинам волн) коэффициент поглощения реального тела. Для серого тела этот коэффициент представляет собой коэффициент монохроматического поглощения αТ, не зависящий от длины волны (введен ранее в 2.2). В качестве тела-источника теплового излучения можно взять вольфрамовую спираль вакуумной лампы накаливания. Подводимая энергия электрического тока в такой лампе расходуется в основном на тепловое излучение. Доля рассеиваемой мощности лампы за счет теплопроводности составляет небольшую величину и ею можно пренебречь в общем балансе энергии.
Таким образом, с одной стороны, мы можем определить мощность излучения из закона Джоуля-Ленца, с другой, определить температуру нити лампы с помощью оптического пирометра. При этом температура, определенная с помощью пирометра, будет истинной, поскольку нити лампы пирометра и исследуемой лампы изготовлены из одного материала - вольфрама. Поэтому можно записать:
W= Iл Uл = αТ S б Т4 (22)
где Iл, Uл - ток и напряжение питания лампы. Зная длину и диаметр нити накала, а также коэффициент черноты αТ вольфрама в видимой области спектра, легко вычислить постоянную Стефана-Больцмана:
(23)
Площадь нити исследуемой лампы накаливания S=0.317·10-3м2. Коэффициент αТ = 0.25.
Дата добавления: 2015-01-19; просмотров: 4634;