Передаточные функции, структурные схемы и частотные характеристики механической части электропривода как объекта управления.

Сначала рассмотрим механическую часть как абсолютно жесткую механическую систему. Уравнение движения такой системы:

Передаточная функция

Структурная схема механической части в этом случае, как следует из уравнения движения, имеет вид, изображенный на рис.

Изобразим ЛАЧХ и ЛФЧХ этой системы. Т.к. звено с передаточной функцией является интегрирующим, то наклон ЛАЧХ – 20 дб/дек. При приложении нагрузки Mc=const скорость в такой системе нарастает по линейному закону и если М=Мс не ограничить, то она возрастает до ¥. Сдвиг между колебаниями М и w, т.е. между выходной и входной величиной постоянен и равен .

       
   
 

Расчетная схема двухмассовой упругой механической системы, как было показано ранее, имеет вид, изображенный на рис.

Структурная схема этой системы может быть получена на основе уравнений движения ; ;

Передаточные функции

.


Структурная схема, соответствующая этим управлениям, имеет вид:

Для исследования свойств этой системы как объекта управления принимаем МС1С2=0 и выполним синтез по управляющему воздействию. Используя правила эквивалентного преобразования структурных схем, можно получить передаточную функцию ,связывающую выходную координату w2 , с входной, которой является w1 и передаточную функцию при выходной координате w1.

;

Характеристическое уравнение системы: .

Корни уравнения: .

Здесь W12 – резонансная частота свободных колебаний системы.

Наличие мнимых корней свидетельствует о том, что система находится на грани устойчивости и если ее толкнуть, то она затухать не будет и на частоте W12 возникает резонансный пик.

Обозначив ; , где

W02 – резонансная частота 2-й инерционной массы при J1 ®¥.

С учетом этого передаточные функции , и будут иметь вид:

;

 
 

Эти соотношения позволяют представить механическую часть эл.привода, как объекта управления в виде 3-х звеньев (см. рис.).

Из этой схемы следует, что передаточная функция системы по управляющему воздействию при выходной переменной w2, т.е. Ww2(r) равна: .


Ей соответствует структурная схема:

 

 

Для анализа поведения системы построим ЛАХЧ и ЛФЧХ механической части как объекта управления, сначала при выходной координате w2, заменив в выражении Ww2(r) R на jW. Они изображены на рис.

Из него следует, что в системе возникают механические колебания, причем число колебаний доходят до 10-30. При этом колебательность инерционной массы J2 выше, чем Массы J1. При W>W12 наклон высокочастотной асимптоты L(w2) равен – 60 дб./дек. И нет факторов, которые ослабляли бы развитие резонансных явлений при любом . Следовательно, когда важно получить требуемое качество движения инерционной массы J2, а также при регулировании координат системы, пренебрегать влиянием упругости механических связей без предварительной проверки нельзя.

В реальных системах имеется естественное демпфирование колебаний, которое, правда существенно не сказывается на форме ЛАХЧ и ЛФЧХ, однако ограничивает резонансный пик конечным значением, как показано пунктиром на рис.

Для анализа поведения системы при выходной координате w1 также построим ЛАХЧ и ЛФХЧ механической части как объекта управления. Структурная схема, вытекающая из передаточной


функции имеет вид:

 

Частотные характеристики приведены ниже:

Движение инерционной массы J1, как следует из характеристики и структурной схемы, при небольших частотах колебаний упругого взаимодействия определяется суммарным моментом инерции , причем механическая часть ведет себя как интегрирующее звено, т.к. характеристика L(w1) асимптотически приближается к асимптоте, имеющий наклон – 20 дб/дек. При M=const скорость w1 изменяется по линейному закону, на который накладываются колебания, обусловленные упругой связью. При приближении частоты колебаний момента М к W12 амплитуда колебаний скорости w1 возрастает и при W=W12 стремиться к бесконечности. Отсюда следует, что чем ближе к 1, т.е. при J2<<J1, тем меньше сказывается влияние упругости на механическую часть системы. Поскольку обычно g=1,2¸1,6, влиянием упругости можно пренебречь и передаточную функцию можно считать как функцию интегрирующего звена (в структурной схеме во втором звене числитель и знаменатель выражения сократятся) и механическую часть эл.привода можно рассматривать как абсолютно жесткое механическое звено.

При g>>1, т.е. J2>J1 и если частота среза , механическую часть эл.привода также можно считать абсолютно жесткой (С12=бесконечности).

Как уже сказано выше, обычно g=1,2¸1,6, но вообще то g=1,2¸100. Величина 100 характерна для редукторных тихоходных электроприводов, например, для механизма поворота стрелы шагающего экскаватора с емкостью ковша 100м3 и длиной стрелы 100м.

 








Дата добавления: 2015-01-19; просмотров: 1123;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.01 сек.