Решение. Число появлений события A: m = 70.

Число испытаний: n = 200.

Число появлений события A: m = 70.

Вероятность появления события A: p = 0,3, значит q = 1 – p = 0,7.

Величина npq = 200∙0,3∙0,7 = 42.

Так как npq > 20, то можно воспользоваться приближенным равенством из локальной теоремы Муавра-Лапласа:

По таблице значений функций Гаусса (приложение 1) находим:

Тогда:

Ответ:

 

11) Вероятность появления события A в каждом из 200 независимых испытаниях постоянна и равна 0,3. Найти вероятность того, что событие A появится не более 70 раз.








Дата добавления: 2015-03-26; просмотров: 614;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.003 сек.