М4 Источник
шаровых волн
Рис. 2
Практически, для всех источников звука, в частности, для музыкальных инструментов, ближние акустические поля являются по своему характеру смешанными, так как соответствуют сложному спектру возбуждения. Низкочастотные компоненты, в особенности те, для которых соблюдается большое отношение длин волн к размерам излучателей, порождают сферические волны, а среднечастотные, тем более высокочастотные составляющие, в противоположность, - плоские волны. Область существования последних с нужной практической точностью может считаться как бы ограниченной поверхностями, примыкающими перпендикулярно к контуру основной излучающей части музыкального инструмента. Впрочем, для оценки направленности плоской волны иногда достаточно просто использовать ось излучения, особенно, когда не приходится скрупулёзно подбирать место расположения и азимут микрофона во имя полной передачи всех спектральных богатств источника.
Следует помнить, что плоскими волнами передаются, во-первых, большинство обертонов музыкальных инструментов, а во-вторых - большинство шумов (щелчков), сопутствующих звукоизвлечению. Разумеется, исключения составляют гулкие низкочастотные призвуки, порождающие сферические волны.
В рамках данного параграфа уместно рассмотреть влияние на микрофонный приём тон-ательекак некоего интегрального источника звука. Достаточно заметить, что диффузное звуковое поле изобилует волнами самых разных форм и направлений, как правило, независимо от характера волн, возбуждающих акустические процессы. Исключения составляют ранние отражения, на что в начале главы уже обращалось внимание. Помещения с плохой диффузностью и маленькие комнаты сразу впечатляют наш слух своей специфичностью, и если последнюю передавать не нужно, то звукорежиссёр обязан не жалеть времени на тщательное исследование архитектурных зон, где, по преимуществу, существуют какие-либо актуальные звуковые признаки.
Не все коллеги разделяют мнения о наличии картины ранних отражений. В особенности это относится к ортодоксальным приверженцам волновой, а не статистической теории акустических процессов в закрытых помещениях. Что ж, переубеждать кого-либо не входит в задачи этой книги. В конце концов, не так уж важно, как что называется, когда речь идёт о вещах явно слышимых, пусть это и не акустические рефлексы, а собственные излучения тон-ателье, клеточки которого от звучащего источника превратились в микроскопические музыкальные инструменты, способные в своём неисчислимом множестве соперничать с огромным оркестром во всей его регистровой и тембральной полноте.
Что касается финальных диффузно-акустических стадий, так называемых «реверберационных хвостов», то в помещениях со сложной внутренней архитектурой часто наблюдаются послезвучания с окраской, так сказать, формантного свойства, почти не зависящей от спектрального состава звука источника. Так ведут себя купола, галереи, балконы, полые замкнутые пространства, примыкающие снаружи к стенам, обрамляющим зал. Наличие направленности этих послезвучаний и простота их обнаружения сомнений не вызывает.
Приступим теперь ко второй части настоящего параграфа -характеристикам направленности микрофонов. Этой теме посвящено огромное количество специальной литературы, и нет нужды вторгаться здесь в детальное исследование всех аспектов вопроса. Вполне достаточно принять во внимание, что:
• реагирующие на звуковое давление ненаправленные микрофоны
являются таковыми лишь в той области спектра, пока их внешние
габариты не становятся соизмеримыми с длиной звуковой волны;
таким образом, на высоких частотах эти микрофоны становятся
односторонне направленными;
• большинство направленных микрофонов отчасти теряют это
свойство на низких частотах, излучаемых удалённым источником;
• практическим телесным (пространственным) углом приёма
направленного микрофона можно считать тот, при котором спад
чувствительности составляет величину порядка 14 - 20 дБ. Это
связано с маскировкой сигналов, идущих с боковых направлений
сигналами осевыми. Для кардиоидных характеристик - это угол
приблизительно в 180°, для суперкардиоидных и
гиперкардиоидных - от 120° до 160°.
• выходной сигнал направленных микрофонов падает
приблизительно пропорционально увеличению расстояния от них
до источников, тогда как у ненаправленных микрофонов он
уменьшается пропорционально квадрату этого расстояния;
• приёмникам градиента звукового давления и комбинированным
микрофонам, в состав которых они входят, свойственен эффект
ближней зоны, когда расстояние между ними и источником
становится меньше длины волны излучения (см. выше );
• микрофоны с характеристиками направленности в форме
суперкардиоиды или гиперкардиоиды имеют примыкающую к их
оси небольшую (в угловом измерении). 3ону тыльного приёма, по
чувствительности соизмеримого с фронтальным;
• частотная характеристика тыльного приёма у многих микрофонов
имеет неравномерности, увы, далеко не монотонного характера.
Поэтому, несмотря на то, что чувствительность направленного
микрофона при падении звуковой волны сзади может быть на
порядок ниже, чем при фронтальном приёме, указанные неравномерности приводят к появлению в данном микрофонном канале, так сказать, осколков спектров других источников, с временной задержкой по отношению к их основному звуку, и диффузной окраской, если они расположены на большом удалении. Это явление особенно заметно и неприятно на частотах порядка 2,5 - 4 килогерц, где человеческий слух обладает максимальной чувствительностью;
Отдельно хочется сказать о микрофонах остронаправленных и сверхостронаправленных (так называемых «пушках»). Их пространственная избирательность в пределах малых телесных углов (от 60° до 120°) сохраняется вплоть до приёма низкочастотных звуковых волн, длины которых начинают превышать продольные размеры рабочей части трубки. У этих микрофонов гипертрофированный эффект ближней зоны, усугубляющийся ещё и упомянутым расширением угла акустического зрения, особенно актуальным для низкочастотных источников звука с большими площадями излучателей, например, литавр.
Благодаря высокой осевой концентрации чувствительности, выходной сигнал этих микрофонов зависит от расстояния до источников значительно меньше, чем у прочих.
Если применить оптические аналогии, то можно сказать, что ненаправленный микрофон как «съёмочный» акустический прибор сопоставим с короткофокусным (широкоугольным) объективом, тогда как сверхостронаправленный подобен телеобъективу, способному при съёмке с большого расстояния передать объект в крупном плане.
Становится ясно, что в области существования
преимущественно сферических волн использование ненаправленных микрофонов целесообразнее, чем направленных. Контраргументом к сказанному, казалось бы, могло явиться замечание, что приёмники звукового давления, обладающие «круговым зрением», одинаково восприимчивы к прямым и приходящим сзади диффузным сигналам, следовательно, при прочих равных условиях, акустическое отношение в этом случае возрастает, звук «мутнеет», приобретая реверберационную окраску. Но не следует путать восприимчивость (читай: выходной сигнал) с чувствительностью, хоть это и родственные понятия. Будучи помещенным, вблизи самого источника, микрофон с круговой характеристикой направленности в значительно меньшей степени передаёт сигналы, отражённые далёкими стенами, а вот в зону расположения направленного приёмника вполне могут попасть акустические отражения, идущие с того же направления, что и звук источника, и соизмеримые с ним по воздействию на микрофон (рис. 3).
Будь микрофон М ненаправленным, его восприимчивость к акустическим лучам, отражённым от поверхности Б, была бы значительно меньше, чем к прямым сигналам саксофона.
Сами акустические рефлексы могут быть иногда направленно сконцентрированными и мощными. Такое типично для излучателей плоской волны, особенно в акцентированной атаке звука. Тогда, действительно, применение направленного микрофона может оказаться оптимальным решением вопроса, если только не забывать о проблемах, связанных с эффектом ближней зоны, и при необходимости заботиться о том, чтобы, в первую очередь, фронтальная сторона приёмника была блокирована от отражённых лучей. Для этой цели за спиной исполнителя (если пользоваться рисунком 3) следует установить звукоизолирующий щит размером (по диагонали) не менее длины волны самого низкого тона в используемом диапазоне музыкального инструмента.
Ситуация становится критической, если размеры помещения для записи - малы, оно недостаточно заглушено и вдобавок обладает плохой диффузностью. В этом случае направленные микрофоны, при всех их недостатках, незаменимы.
Нужно добавить, что микрофоны со сферической диаграммой направленности легко позволяют корректировать соотношение между, так сказать, нижней, основной, интонационной частью звукового состава источника и его обертонами, преимущественно определяющими тембр. Поскольку второе, в отличие от первого обладает более выраженной направленностью, то вся регулировка сводится к перемещению микрофона в сторону оси этой направленности, либо вовне, в зависимости от задачи.
От положения микрофона у источника и его ориентации в пространстве тон-ателье целиком зависит качество звука, о котором говорилось в начале главы; в максимальной степени это относится к направленным микрофонам, наличие которых сегодня в звукозаписывающих студиях, увы, преобладает.
Как только выясняется структура направленности основных и обертоновых составляющих музыкального инструмента, так манипуляции с микрофоном превращаются из движений слепого котёнка в целеустремлённый поиск индивидуального тембра. Не требует пояснений то, что взаимно-встречное совпадение осей наибольшей, точнее, суммарной направленности источника (да простят акустики такую вольную формулировку!) и приёмника обеспечивает всю возможную полноту передачи спектра. И наоборот, наличие угла между этими осями приводит к тембральной нивелированности, что тоже может входить в задачу.
Фонографический образ опустошённости, пожалуй, можно получить путём одного только характера микрофонного приёма, если источник излучает всё обертоновое богатство вперёд и немного вверх, как, к примеру, скрипка, а микрофон расположен сзади артиста и невысоко. Полная убедительность достигается, когда такой позиции не сопутствует увеличенная акустическая окраска, выдающая, так сказать, «звукорежиссёрскую кухню».
Можно гарантировать, что никакими другими электроакустическими способами этого ощущения не добиться.
Преждевременно сожалеть о том, что музыкальный материал не всегда допускает такие ощутимые тембральные привнесения, разве что в произведениях крупных форм, где драматургическое богатство рождает обилие звукорежиссёрских фантазий. Современная фонографическая эстетика в её серьёзных изысканиях богата экспериментами самых разных направлений, изобилующих всевозможными неожиданностями, лишь бы находки были впечатлительными и оправданными.
Полнота передачи звучащего тела теснейшим образом связана с расстоянием между источником и микрофоном, особенно когда последний является направленным. Это расстояние одновременно влияет как на качество, так и на количество звука (см. выше). Музыкальные инструменты больших габаритов, со множеством мод колебаний, однородные группы инструментов, хоры требуют полного их охвата при микрофонном приёме. Уменьшение дистанции приведёт к подчёркиванию локальных акустических зон или отдельных инструментов группы, а её увеличение сверх необходимых пределов даст возрастание акустического отношения, диффузной окраски. Так что оптимум здесь всецело подчиняется художественным целям.
В этом аспекте следует иначе оценивать практический пространственный угол микрофонного приёма. Чтобы края «охвата» источника и центральная его часть передавались с незаметной громкостной разницей, следует использовать ту область направленности, где спад чувствительности не превышает (2 - 4) дБ. Для примера, в случае классической кардиоиды этот угол составит примерно 60°-90°.
Использование направленных электроакустических приёмников в современных музыкальных жанрах и соответствующих студийных технологиях продиктовано ещё так называемым многомикрофонным методом, когда для передачи группового или комбинированного источника, например, ударной установки не всегда удаётся получить желаемую фонографию с помощью одного-единственного микрофона. Причина тому кроется в чрезвычайно сложных и разнородных структурах звуковых полей инструментов, входящих в состав группы.
Естественно, для начала анализ каждой пары источник - микрофонпроводится сепаратно. Устанавливаются, как всегда, основные направления излучения, принимаются решения, что и как «снимать». В основе этих решений лежит вопрос о том, должен ли инструмент излагаться во всей тембральной полноте, либо достаточно лишь обозначить его. Это определит если не тип микрофона в смысле диаграммы направленности (выбор последней, как уже говорилось, может быть обусловлен и другими причинами), то какое-то количество вероятных мест его расположения.
Здесь в появлении множественного числа не следует усматривать стилистическую ошибку. Вторая стадия подготовки звукорежиссёра к микрофонному приёму как раз и состоит в альтернативных поисках, ибо встаёт новый вопрос: как обеспечить акустическую изоляцию данного микрофонного канала от звуков инструментов, соседствующих с собственным? Разумеется, речь не идёт о полном исключении взаимопроникновения, хотя в электроакустике такое тоже возможно, об этом будет сказано в другой главе. Дело состоит в обеспечении такого сигнального разделения, когда возникает относительная свобода в громкостных и спектральных манипуляциях для каждого из каналов; при этом должны быть максимально снижены влияния на «чужой» источник.
Первое, что могло бы прийти в голову, так это - развернуть однонаправленный микрофон тылом в нежелательную сторону, и вопрос закрыт. Но для такого решения нужно быть уверенным в том, что характеристика направленности микрофона не является суперкардиоидной или гиперкардиоидной, ибо в этих случаях существует достаточная восприимчивость микрофона сзади, пусть даже ограниченная как по углу приёма, так и по чувствительности.
Правильным представляется расположение микрофона под таким углом к «чужому» источнику, когда тот оказывается ориентированным в направлении минимальной чувствительности приёмника. Как раз для супер - или гиперкардиоид этим ориентиром является почти перпендикуляр к оси микрофона.
Проще всего, при участии ассистента, находить микрофонный азимут опытным путём, особенно, если техническая документация на микрофон отсутствует, либо в ней не приводится диаграмма направленности. Компромиссные варианты ищутся совместно с исполнителями, которые со вниманием относятся к просьбам звукорежиссёра о каких-либо вариациях в процессе микрофонной настройки.
Задача существенно упрощается, если несколько микрофонов используются в качестве вспомогательных совместно с так называемым общим, обзорным микрофоном, звук которого, в конечном счёте, будет основным, передающим полную, объёмную картину сложного источника, а сигналы локальных микрофонов придадут этой картине дифференцированность, насыщенность, выполнят, так сказать, акустическое моделирование, подобно дополнительному свету, применяемому в изобразительной технике. Ясно, что проблема взаимопроникновения сигналов между соседними парами микрофонов и источников становится уже менее актуальной, коль скоро качество звуковой смеси предопределено наличием общего микрофона.
Здесь свойства локальных микрофонов полностью и бескомпромиссно должны использоваться для оптимальной передачи подчёркиваемых звуковых объектов. В художественном смысле необходимо обращать внимание на изобразительное соответствие элементов обзорного плана и их локальных дополнений, а именно: без специфической обоснованности не следует подмешивать в общую картину сверхкрупные детали каких-либо источников, полученные путём, так сказать, макросъёмки, когда слишком близко установленный локальный микрофон «вырывает» из объекта только фрагмент, который по своим акустическим, в частности, спектральным признакам оказывается неадекватным этому же объекту в общем изображении.
В главе «ФОНОГРАФИЧЕСКАЯ КОМПОЗИЦИЯ»рассматривался вопрос об иллюзии размерности (объёмности) квазиобъектов. Для этой цели часто применяют два, а иногда и большее число микрофонов, устанавливаемых у одного источника. Вопрос направленности этих микрофонов в данном случае принципиального значения не имеет, и может решаться из вышеизложенных соображений. Следует только иметь в виду фазовое соотношение сигналов, поскольку они будут смешиваться, предположительно, в одной области, если не точке стереофонической картины; в чисто техническом смысле - суммироваться. Электрическая интерференция приведет к резко неравномерной, почти гребенчатой спектральной характеристике звукопередачи, что не замедлит сказаться на тембре, особенно в тех его областях, где длины волн излучения соизмеримы с расстоянием между микрофонами.
Критическим случаем является установка двух микрофонов у разных сторон барабанов или больших бонгов (том - томов) при наличии двух мембран («пластиков»). Воздушный столб в замкнутом пространстве этих музыкальных инструментов при атаке вызывает согласованные колебания мембран на частоте основного тона, которые микрофонами, расположенными навстречу друг другу» воспринимаются, как противофазные. В результате, при смешивании микрофонных сигналов основные тона инструментов заметно уменьшаются, атаки становятся обострёнными.
Однако ситуацию не следует рассматривать, как катастрофическую. Во-первых, сигналы двух микрофонов не обязательно должны смешиваться в равных долях, и это уже упрощает проблему. Во-вторых, в микрофонных каналах подавляющего большинства современных звукорежиссёрских пультов имеется инвертор фазы входного сигнала, который можно включить, если дело принимает полярный характер. В-третьих, упомянутые спектральные модуляции вполне регулируются небольшим изменением положения микрофонов; этим достигается тембральный оптимум. И вообще, полученная совокупная окраска, как ни странно, может иной раз оказаться не просто приемлемой, но даже выразительной и привлекательной в своей необычности.
Чтобы использовать два монофонических микрофона для
конкретизации горизонтальных границ большого звукового объекта, например, оркестра, без боязни нарушить фазовую корреляцию сигналов правого и левого каналов, необходимо устанавливать их на максимально возможном угловом расстоянии по отношению к центральной части объекта, для которой фазовый сдвиг наиболее актуален при совмещении стереофонической записи в одноканальных устройствах воспроизведения (см. рис. 3)
Рис.3
Использование направленности стереомикрофонов, вообще говоря, подчиняется тем же закономерностям, о которых говорилось выше. Дополнительно следует усвоить, что диаграммы направленности совмещённых стереофонических приёмников, точнее, пространственный угол обзора каждого из микрофонов, определяют максимальный «разворот» стереопары, при котором фонографическое изображение большого объекта (рояля, хора, инструментальной группы или оркестра в целом) при всей полноте охвата источника не будет иметь разрыва в центре стереофонической картины. На практике такая ситуация отчётливо наблюдается, когда стереоприёмники с диаграммой направленности в виде «восьмёрки», где половина эффективного телесного угла может не превышать 30°- 40°, разворачиваются до взаимного угла в 90°, и звуковое изображение теряет слитность, обнажая два совершенно очевидных азимута - левый и правый, благодаря неоднородности источника (рис. 4).
Рис. 4 |
Впрочем, «разорванное» пространство, как фонографический образ вполне употребимо, и не следует запрещать себе пользоваться этим приёмом только оттого, что данный вопрос подвергнут здесь такому педантичному обсуждению.
Дата добавления: 2015-03-20; просмотров: 672;