Пример 2.1. Исследовать функцию на непрерывность:
Исследовать функцию на непрерывность:
.
Решение.
1. Каждая из составляющих функций является элементарной, значит, каждая из них непрерывна во всех точках, в которых она определена. Точки, «подозрительные» на разрыв: х = 0, х = 1.
Пусть x = 0.
y(0) существует, у(0) = 3∙0 = 0.
Следовательно, в точке х = 0 функция непрерывна по определению.
Пусть х = 1.
y (1) существует; у(1) = 2.
3 ≠ 2, следовательно, точка х = 1 является точкой разрыва 1-го рода (скачок).
2. D(y): x ≠ 1.
Т. к. в точке х = 1 функция не определена, то это точка разрыва.
точка разрыва второго рода.
2.10. Найти точки разрыва функций:
1) ; 2) ;
3) 4)
2.11. Исследовать функции на непрерывность:
1) ; 2) ; 3)
4) 5) ; 6) ;
7) 8) ;
Дата добавления: 2014-12-14; просмотров: 2890;