Проверка гипотез

Как уже говорилось, задача индуктивной статистики- определять. достаточно ли велика разность между средними двух распределений для того, чтобы можно было объяснить ее действием независимой перемен­ной, а не случайностью, связанной с малым объемом выборки (как,

296 Приложение Б

по-видимому, обстоит дело в случае с опытной группой нашего экспе­римента).

При этом возможны две гипотезы:

1) нулевая гипотеза (Нд), согласно которой разница между распреде­лениями недостоверна; предполагается, что различие недостаточно зна­чительно, и поэтому распределения относятся к одной и той же популя­ции, а независимая переменная не оказывает никакого влияния;

2) альтернативная гипотеза (Н^), какой является рабочая гипотеза нашего исследования. В соответствии с этой гипотезой различия между обоими распределениями достаточно значимы и обусловлены влиянием независимой переменной.

Основной принцип метода проверки гипотез состоит в том, что выдвигается нулевая гипотеза Нд, с тем чтобы попытаться опровергнуть ее и тем самым подтвердить альтернативную гипотезу Hi. Действитель­но, если результаты сгатистического теста, используемого для анализа разницы между средними, окажутся таковы, что позволят отбросить Нд, это будет означать, что верна Нц т.е. выдвинутая рабочая гипотеза подтверждается.

В гуманитарных науках принято считать, что нулевую гипотезу можно отвергнуть в пользу альтернативной гипотезы, если по результа­там статистического теста вероятность случайного возникновения най­денного различия не превышает 5 из 1001. Если же этот уровень достоверности не достигается, считают, что разница вполне может быть случайной и поэтому нельзя отбросить нулевую гипотезу.

Для того чтобы судить о том, какова вероятность ошибиться, принимая или отвергая нулевую гипотезу, применяют статистические методы, соответствующие особенностям выборки.

Так, для количественных данных (см. дополнение Б.1) при распреде­лениях, близких к нормальным, используют параметрические методы, основанные на таких показателях, как средняя и стандартное отклоне­ние. В частности, для определения достоверности разницы средних для двух выборок применяют метод Стьюдента, а для того чтобы судить о различиях между тремя или большим числом выборок,-тестF, или дисперсионный анализ.

Если же мы имеем дело с неколичественными данными или выборки слишком малы для уверенности в том, что популяции, из которых они взяты, подчиняются нормальному распределению, тогда используют непараметрические методы-критерии у2 (.та-квадрат) для качественных данных и критерии знаков, рангов, Манна-Уитни, Вилкоксона и др. для порядковых данных.

Кроме того, выбор статистического метода зависит от того, явля­ются ли те выборки, средние которых сравниваются, независимыми (т. е., например, взятыми из двух разных групп испытуемых) или зависимыми

__'_Разумеется, риск ошибиться будет еще меньше, если окажется, что эта вероятное гь составляет 1 на 100 или, еще лучше, 1 на 1000


Статистика и обработка данных


 


(т. е. отражающими результаты одной и той же группы испытуемых до и после воздействия или после двух различных воздействий).

Дополнение Б.З. Уровни достоверности (значимости)

Тот или иной вывод с некоторой вероятностью может оказаться ошибочным, причем эта вероятность тем меньше, чем больше имеется данных для обоснования этого вывода. Таким образом, чем больше получено результатов, тем в большей степени по различиям между двумя выборками можно судить о том, что действительно имеет место в той популяции, из которой взяты эти выборки.

Однако обычно используемые выборки относительно невелики, и в этих случаях вероятность ошибки может быть значительной. В гумани­тарных науках принято считать, что разница между двумя выборками отражает действительную разницу между соответствующими популя­циями лишь в том случае, если вероятность ошибки для этого утвержде­ния не превышает 5%, т.е. имеется лишь 5 шансов из 100 ошибиться, выдвигая такое утверждение. Это так называемый уровень достоверно­сти (уровень надежности, доверительный уровень) различия. Если этот уровень не превышен, то можно считать вероятным, что выявленная нами разница действительно отражает положение дел в популяции (отсюда еще одно название этого критерия-порог вероятности).

Для каждого статистического метода этот уровень можно узнать из таблиц распределения критических значений соответствующих крите­риев (t, /2 и т. д.); в этих таблицах приведены цифры для уровней 5% (0,05), 1% (0,01) или еще более высоких. Если значение критерия для данного числа степеней свободы (см. дополнение Б.4) оказывается ниже критического уровня, соответствующего порогу вероятности 5%, то нулевая гипотеза не может считаться опровергнутой, и это означает, что выявленная разница недостоверна.

Параметрические методы Метод Стьюдента (^-тест)

Это параметрический метод, используемый для проверки гипотез о достоверности разницы средних при анализе количественных данных о популяциях с нормальным распределением и с одинаковой вариан-сой1.

Метод Стьюдента различен для независимых и зависимых выборок. Независимые выборки получаются при исследовании двух различных

' К сожалению, метод Стьюдента слишком часто используют для малых выборок, не убедившись предварительно в том, что данные в соответствующих популяциях подчиняются закону нормального распределения (например, ре­зультаты выполнения слишком легкого задания, с которым справились все испытуемые, или же, наоборот, слишком трудного задания не дают нормального распределения).


298 Приложение Б


 


групп испытуемых (в нашем эксперименте это контрольная и опытная группы). В случае независимых выборок для анализа разницы средних применяют формулу

, м,-м,
1 „2 „2 ' /•^.(-^ V«1 Иг

 

где М ^- средняя первой выборки;

Мд-средняя второй выборки;

s^ -стандартное отклонение для первой выборки;

s^- стандартное отклонение для второй выборки;

Hi и Ид-число элементов в первой

и второй выборках.

Теперь осталось лишь найти в таблице значений t (см. дополнение Б. 5) величину, соответствующую п — 1 степеням свободы, где и-общее число испытуемых в обеих выборках (см. дополнение Б.4). и сравнить эту величину с результатом расчета по формуле.

Если наш результат больше, чем значение для уровня достоверности 0,05 (вероятность 5%), найденное в таблице, то можно отбросить нулевую гипотезу (Но) и принять альтернативную гипотезу (Нд), т.е. считать разницу средних достоверной.

Если же, напротив, полученный при вычислении результат меньше, чем табличный (для и - 2 степеней свободы), то нулевую гипотезу нельзя отбросить и, следовательно, разница средних недостоверна.

В нашем эксперименте с помощью метода Стьюдента для независи­мых выборок можно было бы, например, проверить, существует ли достоверная разница между фоновыми уровнями (значениями, получен­ными до воздействия независимой переменной) для двух групп. При этом мы получим:

,= У5^-15'2^- °'60 =053

/0,62 - 0,66

/3,072 3,172

^ly

Сверившись с таблицей значений t, мы можем прийти к следующим выводам: полученное нами значение t = 0,53 меньше того, которое соответствует уровню достоверности 0,05 для 26 степеней свободы (г| = 28); следовательно, уровень вероятности для такого t будет выше 0,05 и нулевую гипотезу нельзя отбросить; таким образом, разница между двумя выборками недостоверна, т. е. они вполне могут принадле­жать к одной популяции.

Сокращенно этот вывод записывается следующим образом:

/ = 0,53; г) = 28; р > 0,05; недостоверно. Однако наиболее полезным г-тест окажется для нас при проверке

' Как уже говорилось, поскольку объем выборок в данном случае невелик, а результаты опытной группы после воздействия не соответствуют нормальному распределению, лучше использовать непараметрический метод, например U-тест Манна-Уитни.


Статистика и обработка данных


 


гипотезы о достоверности разницы средней между результатами опыт­ной и контрольной групп после воздействия'. Попробуйте сами найти для этих выборок значения и сделать соответствующие выводы:


Значение t ...... чем табличное для 0,05 (..... степеней свободы).

Следовательно, ему соответствует порог вероятности ...... чем 0,05.

В связи с этим нулевая гипотеза может (не может) быть отвергнута. Разница между выборками достоверная (недостоверна?):

(<, =, > ?)0,05; .....

t =

.;Р.

.; П =








Дата добавления: 2014-12-09; просмотров: 1031;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.008 сек.