Классификация криптографических методов защиты информации
Криптографические методы являются наиболее эффективными средствами защиты информации в автоматизированных системах (АС). А при передаче информации по протяженным линиям связи они являются единственным реальным средством предотвращения несанкционированного доступа.
Шифрование методом замены (подстановки)
Наиболее простой метод шифрования. Символы шифруемого текста заменяются другими символами, взятыми из одного алфавита (одноалфавитная замена) или нескольких алфавитов (многоалфавитная подстановка).
Виды шифровании методом замены (подстановки):
· Одноалфавитнаяподстановки;
· Многоалфавитная одноконтурная обыкновенная подстановки;
· Многоалфавитная одноконтурная монофоническаяподстановки;
· Многоалфавитная многоконтурная подстановки.
Шифрование методом перестановки
При шифровании перестановкой символы шифруемого текста переставляются по определенным правилам внутри шифруемого блока этого текста.
Виды шифрований методом перестановки:
· Простая перестановка;
· Усложненная по таблице перестановка;
· Усложненная по маршрутам перестановка;
Одноалфавитная подстановка
Простейшая подстановка - прямая замена символов шифруемого сообщения другими буквами того же самого или другого алфавита.
Примеры таблиц замены:
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ь Ы Ъ Э Ю Я
М Л Д О Т В А Ч К Е Ж Х Щ Ф Ц Э Г Б Я Ъ Ш Ы З И Ь Н Ю У П С Р Й
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ь Ы Ъ Э Ю Я
Q W E R T Y U I O P [ ] A S D F G H J K L Z X C V B N M <> @ %
Стойкость метода простой замены низкая. Зашифрованный текст имеет те же самые статистические характеристики, что и исходный, поэтому зная стандартные частоты появления символов в том языке, на котором написано сообщение, и подбирая по частотам появления символы в зашифрованном сообщении, можно восстановить таблицу замены. Для этого требуется лишь достаточно длинный зашифрованный текст, для того, чтобы получить достоверные оценки частот появления символов. Поэтому простую замену используют лишь в том случае, когда шифруемое сообщение достаточно коротко.
Многоалфавитная одноконтурная обыкновенная подстановка
Для замены символов используются несколько алфавитов, причем смена алфавитов проводится последовательно и циклически: первый символ заменяется на соответствующий символ первого алфавита, второй - из второго алфавита, и т.д. пока не будут исчерпаны все алфавиты. После этого использование алфавитов повторяется.
Рассмотрим шифрование с помощью таблицы Вижинера - квадратной матрицы с n2 элементами, где n - число символов используемого алфавита. В первой строке матрицы содержится исходный алфавит, каждая следующая строка получается из предыдущей циклическим сдвигом влево на один символ.
Таблица Вижинера для русского алфавита:
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ь Ы Ъ Э Ю Я
Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ь Ы Ъ Э Ю Я А
В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ь Ы Ъ Э Ю Я А Б
Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ь Ы Ъ Э Ю Я А Б В
Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ь Ы Ъ Э Ю Я А Б В Г
Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ь Ы Ъ Э Ю Я А Б В Г Д
Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ь Ы Ъ Э Ю Я А Б В Г Д Е
З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ь Ы Ъ Э Ю Я А Б В Г Д Е Ж
И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ь Ы Ъ Э Ю Я А Б В Г Д Е Ж З
Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ь Ы Ъ Э Ю Я А Б В Г Д Е Ж З И
К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ь Ы Ъ Э Ю Я А Б В Г Д Е Ж З И Й
Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ь Ы Ъ Э Ю Я А Б В Г Д Е Ж З И Й К
М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ь Ы Ъ Э Ю Я А Б В Г Д Е Ж З И Й К Л
Н О П Р С Т У Ф Х Ц Ч Ш Щ Ь Ы Ъ Э Ю Я А Б В Г Д Е Ж З И Й К Л М
О П Р С Т У Ф Х Ц Ч Ш Щ Ь Ы Ъ Э Ю Я А Б В Г Д Е Ж З И Й К Л М Н
П Р С Т У Ф Х Ц Ч Ш Щ Ь Ы Ъ Э Ю Я А Б В Г Д Е Ж З И Й К Л М Н О
Р С Т У Ф Х Ц Ч Ш Щ Ь Ы Ъ Э Ю Я А Б В Г Д Е Ж З И Й К Л М Н О П
С Т У Ф Х Ц Ч Ш Щ Ь Ы Ъ Э Ю Я А Б В Г Д Е Ж З И Й К Л М Н О П Р
Т У Ф Х Ц Ч Ш Щ Ь Ы Ъ Э Ю Я А Б В Г Д Е Ж З И Й К Л М Н О П Р С
У Ф Х Ц Ч Ш Щ Ь Ы Ъ Э Ю Я А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т
Ф Х Ц Ч Ш Щ Ь Ы Ъ Э Ю Я А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У
Х Ц Ч Ш Щ Ь Ы Ъ Э Ю Я А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф
Ц Ч Ш Щ Ь Ы Ъ Э Ю Я А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х
Ч Ш Щ Ь Ы Ъ Э Ю Я А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц
Ш Щ Ь Ы Ъ Э Ю Я А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч
Щ Ь Ы Ъ Э Ю Я А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш
Ь Ы Ъ Э Ю Я А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ
Ы Ъ Э Ю Я А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ь
Ъ Э Ю Я А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ь Ы
Э Ю Я А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ь Ы Ъ
Ю Я А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ь Ы Ъ Э
Я А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ь Ы Ъ Э Ю
Для шифрования необходимо задать ключ - слово с неповторяющимися символами. Таблицу замены получают следующим образом: строку "Символы шифруемого текста" формируют из первой строки матрицы Вижинера, а строки из раздела "Заменяющие символы" образуются из строк матрицы Вижинера, первые символы которых совпадают с символами ключевого слова.
При шифровании и дешифровании нет необходимости держать в памяти всю матрицу Вижинера, поскольку используя свойства циклического сдвига, можно легко вычислить любую строку матрицы по ее номеру и первой строке.
При шифровании символы из первой строки заменяются символами остальных строк по правилу
a(1,i) -> a(k,i),
где k - номер используемой для шифрования строки.
Используя свойства циклического сдвига влево элементы k-ой строки можно выразить через элементы первой строки
a(1,i+k-1), еслиi<=n-k+1
a(k,i)=
a(1,i-n+k-1), еслиi>n-k+1
При дешифровании производится обратная замена
a(k,i) -> a(1,i).
Поэтому необходимо решить следующую задачу: пусть очередной дешифруемый символ в тексте - a(1,j) и для дешифрования используется k-я строка матрицы Вижинера. Необходимо найти в k-ой строке номер элемента, равного a(1,j). Очевидно,
a(k,j-k+1), если j>=k
a(1,j)=
a(k,n-k+j+1), если j<k
Таким образом при дешифровании по k-ой строке матрицы Вижинера символа из зашифрованного текста, значение которого равно a(1,j), проводится обратная подстановка
a(1,j-k+1), если j>=k
a(1,j) ->
a(1,n-k+j+1), еслиj<k
Стойкость метода равна стойкости метода подстановки, умноженной на количество используемых при шифровании алфавитов, т.е. на длину ключевого слова и равна 20*L, где L - длина ключевого слова.
С целью повышения стойкости шифрования предлагаются следующие усовершенствования таблицы Вижинера:
Во всех (кроме первой) строках таблицы буквы располагаются в произвольном порядке.
В качестве ключа используются случайные последовательности чисел, которые задают номера используемых строк матрицы Вижинера для шифрования.
Комбинация нескольких подряд примененных простых шифров, (например, перестановки или подстановки) дает в результате более сложное преобразование, называемое комбинированным (композиционным) шифром. Этот шифр обладает более сильными криптографическими возможностями, чем отдельная перестановка или подстановка.
Симметричные криптосистемы (также симметричное шифрование, симметричные шифры) — способ шифрования, в котором для шифрования и расшифровывания применяется один и тот же криптографический ключ. До изобретения схемы асимметричного шифрования единственным существовавшим способом являлось симметричное шифрование. Ключ алгоритма должен сохраняться в секрете обеими сторонами. Алгоритм шифрования выбирается сторонами до начала обмена сообщениями.
Алгоритмы шифрования и дешифрования данных широко применяются в компьютерной технике в системах сокрытия конфиденциальной и коммерческой информации от злонамеренного использования сторонними лицами. Главным принципом в них является условие, что передатчик и приемник заранее знают алгоритм шифрования, а также ключ к сообщению, без которых информация представляет собой всего лишь набор символов, не имеющих смысла.
Классическим примером таких алгоритмов являются симметричные криптографические алгоритмы, перечисленные ниже:
· Простая перестановка;
· Одиночная перестановка по ключу;
· Двойная перестановка;
· Перестановка "Магический квадрат";
Криптографическая система с открытым ключом (или асимметричное шифрование, асимметричный шифр) — система шифрования и/или электронной подписи (ЭП), при которой открытый ключ передаётся по открытому (то есть незащищённому, доступному для наблюдения) каналу и используется для проверки ЭП и для шифрования сообщения. Для генерации ЭП и для расшифровки сообщения используется закрытый ключ. Криптографические системы с открытым ключом в настоящее время широко применяются в различных сетевых протоколах, в частности, в протоколах TLS и его предшественнике SSL (лежащих в основе HTTPS), в SSH. Также используется в PGP, S/MIME.
Тема 8
Дата добавления: 2014-12-06; просмотров: 2366;