Системы извлечения знаний
Прорыв в области высокоскоростных коммуникаций, ориентация сети Internet на реализацию коммерческих приложений привели к тому, что объем данных, требующих осмысленной обработки, возрос настолько, что появилась реальная потребность в недорогих, простых в обращении, но достаточно гибких программах для осмысленного анализа лавинообразного потока «сырой» информации. В результате этого спроса возник рынок интеллектуальных систем нового поколения. Стали появляться программы, способные самостоятельно, без предварительного обучения на опыте эксперта, извлекать информацию (знания) из баз данных большого объема и глобальных информационных сетей. Многие из этих программ были выпущены на рынок не совсем доработанными, что объясняется стремлениемих производителей закрепиться в новой рыночной нише, однако темпы роста нового рынка и интерес, проявляемый к нему со стороны бизнесменов и политиков, позволяют специалистам предсказывать ему большое будущее.
В настоящее время нет строго определенного термина, обозначающего новый класс интеллектуальных систем.
Чаще всего в литературе для их обозначения используется англоязычное словосочетание «data mining». В русскоязычном варианте можно встретить названия: «системы добычи данных (знаний)», «системы извлечения знаний», DM-системы и некоторые другие.
Наиболее важными отличительными особенностями систем, относимых к DM-системам.
1. Прежде всего, DM-системы обеспечивают автоматическое выявление корреляций между различными атрибутами элементов данных в реляционных БД. С их помощью можно получить ответы, например, на такие вопросы, как: «Какие факторы способствуют увеличению числа продаж того или иного товара? Какие события влияют на изменения котировок ценных бумаг? Какова общая картина политических симпатий избирателей по регионам?» Часто в качестве одного из контролируемых параметров выступает шкала времени, тогда система имеет возможность отображать динамику валютных торгов, прогнозы пополнения сырьевых запасов, эволюцию взглядов электората.
Современные DM-системы способны не только находить корреляционные зависимости, но и оценивать вероятность каждой гипотезы. А наиболее мощные системы, использующие аппарат нечеткой логики, способны оперировать как количественными, так и качественными параметрами — «популярный», «прибыльный», «стабильный» и др.
2. Важной функцией DM-систем является автоматическая кластеризация данных для ответов, например, на такие вопросы: «На какие группы делятся клиенты страховой компании?» «Какая группа наиболее представительна?» «Какая наиболее доходна?» Обычно пользователей интересует не только количество и размер кластеров, но и расположение их центров, характеризующее черты типичного представителя данного класса объектов, четкость границ и многие другие параметры.
3. Следующим важным атрибутом больших DM-систем является возможность автоматизированной обработки неструктурированной текстовой информации.
4. Еще одна важная особенность — каждая DM-система в той или иной степени обладает способностью генерировать итоговые отчеты в форме, максимально приближенной к тексту на естественном языке.
Для решения основной задачи DM-систем — выделения корреляционных зависимостей между данными — чаще всего используются три подхода: многомерный корреляционный анализ, обработка гипотез по принципу «запрос-отчет» и так называемые «интеллектуальные агенты».
Основными потребителями систем искусственного интеллекта в настоящее время являются военно-промышленные комплексы, а также финансовые и банковские структуры. Индустриальные компании, обладающие исследовательским потенциалом, обычно идут по пути создания собственных систем для обработки технической, управленческой и маркетинговой информации.
Дата добавления: 2014-12-05; просмотров: 830;