Математические подробности. MVOPlus обладает уникальной способностью определения портфеля с максимальной годовой доходностью (средней геометрической доходностью)

MVOPlus обладает уникальной способностью определения портфеля с максимальной годовой доходностью (средней геометрической доходностью), в то время как все другие коммерческие оптимизаторы определяют актив с самой высокой средней арифметической доходностью в качестве последнего портфеля, который не является портфелем с максимальной средней геометрической доходностью. Это происходит потому, что разница между средней арифметической и средней геометрической доходностью равна примерно половине отклонения портфеля, или (SD)2 / 2, и называется запаздыванием отклонения (variance drag). По мере движения вправо по графику соотношения доходности и риска запаздывание отклонения возрастает до точки, когда средняя геометрическая доходность начинает падать. Помните, что вы уменьшаете среднюю геометрическую доходность в годовом исчислении, а не среднюю арифметическую доходность.

 

Конечно, вы не ограничены угловыми портфелями. Если вы решите, что хотите оказаться на середине пути между портфелями 7 и 8, то просто усредняйте составы двух портфелей для каждого актива.

Взгляните на портфель 7. Он примерно на треть состоит из акций и на две трети из 5-летних казначейских билетов. Пока все вроде бы нормально. Но посмотрите на состав акций: почти исключительно акции мелких компаний США, японских компаний и компаний, занимающихся добычей драгоценных металлов. Это не тот портфель, которым хотел бы владеть любой разумный человек. Неслучайно в него вошли три актива, по которым получена самая высокая доходность за период с 1970 по 1996 г. Мы только что столкнулись с губительным недостатком оптимизации – излишним пристрастием к активам, имеющим в последнее время высокую доходность. По сути, после небольшой практики можно добиться от оптимизатора расчета почти любого желаемого портфеля. Измените данные о доходности по большинству активов на несколько процентов в любом направлении, и этот актив будет либо доминировать в портфеле, либо полностью исчезнет из него. Вы думаете, что можете спрогнозировать доходность по всем основным классам активов в своем портфеле? Если да, то вы и в самом деле очень талантливы. Следовательно, два фундаментальных закона оптимизаторов:

• оптимизатор явно предпочтет активы с высокой исторической или ожидаемой доходностью;

• если вы можете достаточно точно предсказать исходные данные оптимизатора для того, чтобы близко подойти к будущей границе эффективности, то оптимизатор вам не нужен.

 

Из приведенного примера должны быть видны риски необдуманного ввода в оптимизатор исторической доходности, стандартного отклонения и корреляций. Доходность актива склонна к тенденции иметь обратный смысл за длительные периоды времени: актив с выдающейся доходностью за последние 10 лет, скорее всего, будет иметь доходность ниже среднего в последующие 10 лет. Поэтому некоторые в шутку прозвали оптимизаторы максимизаторами ошибок.

Для лучшего понимания ошибок оптимизации посмотрим на то, что в действительности происходит при необдуманном вводе исторических данных в оптимизатор. Разделим период с 1970 по 1998 г. на несколько пятилеток и один четырехлетний период. Далее оптимизируем каждый пятилетний период и посмотрим, как оптимальное распределение активов, состоящих только из акций, будет вести себя в последующий пятилетний период по сравнению с «портфелем труса», состоящим из равных частей всех шести активов, представленных акциями (крупных компаний США, мелких компаний США, европейских компаний, компаний Азиатско-Тихоокеанского региона, японских компаний и компаний, занимающихся добычей драгоценных металлов).

Начнем с периода 1970–1974 гг. В этот период оптимальную доходность показывало следующее распределение: 99,8 % акций компаний, занимающихся добычей драгоценных металлов, и 0,2 % акций японских компаний; годовая доходность составляла 29,97 %. При переносе этого распределения на период с 1975 по 1979 г. получаем доходность в размере 14,71 % по сравнению с 25,38 % по «портфелю труса».

В 1975–1979 гг. оптимальным распределением было владение 100 % акций мелких компаний США; годовая доходность составляла 39,81 %. Это распределение, по сути, оказалось довольно эффективным при переносе на период с 1980 по 1984 г.: доходность составила 21,59 % по сравнению с доходностью «портфеля труса» в 14,75 %.

В 1980–1984 гг. оптимальным распределением было 73 % акций мелких компаний США и 27 % акций компаний, занимающихся добычей драгоценных металлов: доходность составляла 21,94 %. При переносе на период с 1985 по 1989 г. это распределение приносило доходность 11,83 % по сравнению с 24,14 % на «портфель труса».

В 1985–1989 гг. оптимальное распределение – 100 % акций японских компаний; оно приносило ошеломляющую годовую доходность в размере 40,24 %. Следующие пять лет? Минус 5,5 % по сравнению с +7,54 % по «портфелю труса».

Полезно вернуться на «машине времени» в конец 1980-х гг. Несколько квадратных миль недвижимости в Токио стоили больше, чем вся Калифорния, и скоро всем предстояло заговорить по-японски. «Доходность индекса Nikkei в сто раз больше? Просто люди с Запада не понимают, как оценивать акции на токийских рынках».

И, наконец, для периода с 1990 по 1994 г. лучшей стратегией распределения было владение 100 % акций компаний Азиатско-Тихоокеанского региона: годовая доходность составляла 15,27 %. В следующие четыре года (1995–1998) эта стратегия принесла убыток в 3,22 % против доходности «портфеля труса» в 6,61 %. И еще раз: в 1994 г. «все знали», что «азиатские тигры» достигнут американского уровня жизни за десять лет.

За весь период с 1975 по 1998 г. описанная выше пятилетняя стратегия оптимизации принесла бы годовую доходность в размере 8,40 %, что ниже доходности любого отдельно взятого актива, состоящего из акций, и намного ниже годовой доходности «портфеля труса» в 15,79 %.

Оптимизируя историческую доходность, вы на самом деле принимаете наиболее распространенную на современном этапе точку зрения. Это не совпадение. Рынки, прошедшие через период аномально высокой доходности, обычно претерпевали значительный рост цен, в разы больший роста дохода на акцию, и это почти всегда было следствием растущего оптимизма по отношению к данному активу.

Где мы находимся с нашим оптимизатором? В глубоком проигрыше. Мы не можем достаточно точно прогнозировать доходность, стандартное отклонение и корреляции, а если бы могли, то нам не был бы нужен оптимизатор. А оптимизация «сырых» исторических доходностей – билет в один конец в богадельню.

Итак, забудьте про получение ответа из магического черного ящика. Придется поискать последовательную стратегию распределения активов в другом месте.

 








Дата добавления: 2014-12-05; просмотров: 1022;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2025 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.006 сек.