ОСНОВНЫЕ ТИПЫ ИЗОЛЯЦИОННЫХ КОНСТРУКЦИИ

В электрическом отношении изоляция трансформатора должна надежно предохранить части, находящиеся под напряжением, — обмотки, отводы, переключатели и вводы — от разряда между собой и на заземленные части как при рабочем напряжении, так и при возможных перенапряжениях. Расчет изоляции для каждой части, находящейся под напряжением, обычно заключается: 1) в выявлении основных изоляционных промежутков между этой частью и другими такими частями и заземленными деталями; 2) в определении по нормам испытательных напряжений для этих промежутков; 3) в выборе размеров этих промежутков и подборе изоляционных конструкций и материалов, обеспечивающих электрическую прочность при найденных испытательных напряжениях.

Расположение основных изоляционных промежутков определяется конструкцией трансформатора, взаимным расположением его обмоток, магнитной системы, бака и других частей. Так в стержневом трансформаторе современной конструкции с концентрическими обмотками основными промежутками главной изоляции являются: осевые каналы между обмоткой НН и стержнем, между обмотками ВН и НН; пространство между торцами обмоток НН и ВН и ярмом; пространство между обмоткой ВН и стенкой бака и др. (рис. 4.1). Этим промежуткам соответствуют вполне определенные электрические воздействия при испытаниях трансформатора испытательным напряжением. В трансформаторе с чередующимися обмотками в связи с другим расположением обмоток изменится как расположение основных изоляционных промежутков, так и воздействие на них испытательных напряжений (рис. 4.2).

При расчете главной изоляции очень важно выявить все изоляционные промежутки, подверженные опасности пробоя, и правильно определить те испытательные напряжения, иод воздействием которых эти промежутки будут находиться.

Рис 4.1 основные изоляционные промежутки главной изоляции в концентрических обмотках

Рис 4.2 Основные изоляционные промежутки главной изоляции в чередующихся обмтках

Рис. 4.3 Элементы изоляционных конструкций:

а-сплошная изоляция из твердого диэлектрика; б-чисто масляный (воздушный) промежуток; в-барьер; г-покрытие одного из электродов; д-изолирование одного из электродов

Рис. 4.4. Простейшие изоляционные конструкции:

а-твердая изоляция между двумя отводами; б-масляный промежуток между шиной отвода ярмовой балкой; в - барьер - междуфазная перегородка между обмотками ВН; г- покрытие – изоляция витка в промежутке между обмоткой ВН и стяжной шпилькой остова; д – изолированный отводвблизи стенка бака.

Определение минимально допустимых размеров изоляционных промежутков тесно связано с теми изоляционными конструкциями, которыми будут заполняться эти промежутки. Каждая изоляционная конструкция, как бы сложна она ни была, всегда может быть представлена в виде комбинации из нескольких простых элементов (рис. 4.3):

1) сплошной изоляции из твердого изолирующего материала;

2) чисто масляного или воздушного промежутка;

3) барьера, т. е. перегородки из твердого изолирующего материала в масляном или воздушном промежутке;

4) покрытия одного или обоих электродов тонким слоем твердого изолирующего материала, плотно облегающего электрод и принимающего его форму;

5) изолирования, аналогичного покрытию, но отличающегося большей толщиной твердого диэлектрика, обеспечивающей снижение напряженности в масляной части Промежутка.

Примеры простейших изоляционных конструкций применительно к масляному трансформатору показаны на рис. 4.4. В главной изоляции масляных и сухих трансформаторов обычно применяются конструкции, состоящие из комбинации нескольких элементов. Размеры изоляционных промежутков и сложность конструкций обычно возрастают с ростом класса напряжения и испытательных напряжений трансформаторов.

В практике отечественного и зарубежного трансформаторостроения наибольшее распространение получила маслобарьерная главная изоляция обмоток, состоящая из различных комбинаций масляных каналов или промежутков с барьерами в виде бумажно-бакелитовых цилиндров.

Рис. 4.5. Изоляционные расстояния и структура концевой изоляции обмотки масляного трансформатора при классах напряжения от 35 до 500 кВ:

а —класс напряжения 35/85 кВ; б — 35/85 кВ, облегченная изоляция; в—110/200 кВ; г — 500/630 кВ; д — 330/460 кВ. Размеры в миллиметрах.

Структура изоляции и размеры даны ориентировочноиз электроизоляционного картона и кабельной бумаги, плоских и угловых шайб.Размеры изоляционных промежутков главной изоляции обмоток существенно возрастают с ростом класса напряжения трансформатора, что приводит к увеличению расхода изоляционных материалов, а также к увеличению массы и габаритов магнитной системы, обмоток н всего трансформатора. Относительное изменение размеров изоляционных промежутков в концевой изоляции обмоток классов напряжения от 35 до 500 кВ, а также усложнение схем маслобарьерных конструкций изоляции показано на рис. 4.5.

При всем многообразии внешних форм частей, находящихся под напряжением и заземленных, и их взаимного расположения, а также при том, что напряжение частоты 50 Гц и импульсные перенапряжения оказывают на изоляцию различные воздействия, глубокое теоретическое и экспериментальное изучение электрического поля обмоток и других частей позволило создать общий метод разработки изоляции трансформатора при классах напряжения до 750 и 1150 кВ, требующий для проверки на реальных конструкциях относительно малого объема экспериментальных работ. Рекомендации по выбору структуры изоляции, материалов деталей и размеров изоляционных промежутков для классов напряжения обмоток от 10 до ПО кВ приведены в § 4.5.








Дата добавления: 2015-01-02; просмотров: 1275;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.