Электронные конфигурации элементов
Пе-риод | Порядко-вый номер | Эле-мент | Электронная конфигурация | Пе-риод | Порядко-вый номер | Эле-мент | Электронная конфигурация | |
H He | 1s1 1s2 | K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ca Ge As Se Br Kr | [Ar]4s1 4s2 3d14s2 3d24s2 3d34s2 3d54s1 3d54s2 3d64s2 3d74s2 3d84s2 3d104s1 3d104s2 3d104s24p1 3d104s24p2 3d104s24p3 3d104s24p4 3d104s24p5 3d104s24p6 | |||||
Li Be B C N O F Ne | [He]2s1 2s2 2s22p1 2s22p2 2s22p3 2s22p4 2s22p5 2s22p6 | |||||||
Na Mg Al Si P S Cl Ar | [He]3s1 3s2 3s23p1 3s23p2 3s23p3 3s23p4 3s23p5 3s23p6 | |||||||
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb | [Kr]5s1 5s2 4d15s2 4d25s2 4d45s1 4d55s1 4d65s2 4d75s1 4d85s1 4d105s0 4d105s1 4d105s2 4d105s2p1 4d105s2p2 4d105s2p3 | Te I Xe Cs Ba La Ce Pr Nd Pm Sm Eu Gd | 4d105s2p4 4d105s2p5 4d105s2p6 [Xe]6s2 6s2 5d16s2 4f26s2 4f36s2 4f46s2 4f56s2 4f66s2 4f76s2 4f25d16s2 | |||||
Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn | 4f96s2 4f106s2 4f116s2 4f126s2 4f136s2 4f146s2 4f145d16s2 5d26s2 5d36s2 5d46s2 5d56s2 5d66s2 5d76s2 5d96s1 5d106s1 5d106s2 5d106s26p1 5d106s26p2 5d106s26p3 5d106s26p4 5d106s26p5 5d106s26p6 | Fr Ra Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md (No) (Lr) Ku - - - - - | [Rn]7s1 7s2 6d17s2 6d27s2 5f27d17s2 5f36d17s2 5f46d17s2 5f67s2 5f77s2 5f76d17s2 5f86d17s2 5f107s2 5f117s2 5f127s2 5f137s2 5f147s2 6d17s2 6d27s2 6d37s2 6d47s2 6d57s2 |
Четвертый период завершается формированием подоболочки 4рукриптона [Ar] 3d°4s24p6или [Кг]. Всего в четвертом периоде 18 элементов.
Пятый период аналогичен четвертому периоду. Он начинается с s -элемента рубидия [Кг] 5s1 и заканчивается p-элементом ксеноном [Кг] 4d105s25p6или [Хе] и включает в себя десять 4d -элементов от иттрия до кадмия. Всего в пятом периоде 18 элементов.
В шестом периоде, как и в пятом, после заполнения s -подоболочки начинается формирование d-подоболочки предвнешнего уровня у лантана. Однако, у следующего элемента энергетически выгоднее формирование 4f - подоболочки по сравнению с 5d- подоболочкой. Поэтому после лантана следует 14 лантаноидов с формирующими f- электронами, т.е.f- элементов от церия Се [Хе] 4f25d06s2до лутеция Lu [Xe] 4f45d16s2. Затем продолжается заполнение оставшихся орбиталей в 5 d-подоболочке и 6р- подоболочке. Период завершает радон [Хе] 4f145d106s26p6или [Rn]. Таким образом период имеет 32 элемента: два s-элемента, шесть p-элементов, десять d-элементов и четырнадцать f- элементов.
Седьмой период начинается и продолжается аналогично шестому периоду, однако формирование его не завершено. Он также имеет вставную де Р и с. 3. Зависимость первой энергии ионизации каду из d-элементов и четырнадцать от порядкового номера элемента Z 5f- элементов (актиноидов).
3.3. Периодические свойства элементов.Так как электронное строение элементов изменяется периодически, то соответственно периодически изменяются и свойства элементов, определяемые их электронным строением, такие как энергия ионизации, размеры атомов, окислительно-восстановительные и другие свойства.
Количественно-химическая активность элементов может быть выражена с помощью таких характеристик, как энергия (потенциал) ионизации, сродство к электрону, относительная электроотрицательность. Две первых характеристики измеряются в единицах энергии (ккал, кдж, эв и др.), последняя – относительная безразмерная величина.
Энергия ионизации. Энергия, необходимая для удаления одного моля электронов от одного моля атомов какого либо элемента, называется первой энергией ионизации I1. В результате ионизации атомы превращаются в положительно заряженные ионы. Энергию ионизации выражают либо в килоджоулях на моль (кДж/моль), либо в электронвольтах (эВ).
Na0 – ē = Na+ – 5,14 эв
Cs0 – ē = Cs+ – 3,9 эв
Энергия ионизации характеризует восстановительную способность элемента, т.е. металличность. Активные металлы обладают очень малыми значениями энергии ионизации. Первая энергия ионизации (рис. 3) определяется электронным строением элементов и ее изменение имеет периодический характер. Энергия ионизации возрастает по периоду. Наименьшие значения энергии ионизации имеют щелочные элементы, находящиеся в начале периода, наибольшими значениями энергии ионизации характеризуются благородные газы, находящиеся в конце периода. Пики на кривой зависимости энергии ионизации от порядкового номера элемента наблюдаются у элементов с законченной s- подоболочкой (Be, Mg) и d- подоболочкой (Zn, Cd, Hg), и р- подоболочкой, в АО которой находится по одному электрону (N, P, As). Минимумы на кривой наблюдаются у элементов, имеющих на внешней подоболочке по одному электрону (щелочные металлы, В, Al, Ga, In). В одной и той же группе энергия ионизации несколько уменьшается с увеличением порядкового номера элемента, что обусловлено увеличением размеров атомов и расстояния внешних подоболочек от ядра.
Кроме первой энергии ионизации, элементы с многоэлектронными атомами могут характеризоваться второй I2, третьей I3, и более высокой энергией ионизации, которые равны соответственно энергии отрыва молей электронов от молей ионов Э+,Э2+ и т. д. При этом энергии ионизации возрастают с увеличением их номеров, т.е. I1<I2<I3. Особенно резкое увеличение ионизации наблюдается при отрыве электронов из заполненной подоболочки.
Сродство к электрону. Энергетический эффект присоединения моля электронов к молю нейтральных атомов называется сродством к электрону. Например:
Э + е = Э
Сродство к электрону Еср количественно выражается в кДж/моль или эВ.
F0 + ē = F – + 3,58 эв
I0 + ē = I – + 3,3 эв
Е отражает способность атомов притягивать электроны, т.е. их неметаллический характер, и увеличивается по периоду слева направо, по группе снизу вверх. Наибольшие значения сродства к электрону имеют галогены, кислород, сера, наименьшие и даже отрицательные значения ее - элементы с электронной конфигурацией s2 (He, Be, Mg, Zn), с полностью или наполовину заполненными p-подоболочками (Ne, Аг, Кг, N, P, As).
Электроотрицательность. Для характеристики способности атомов в соединениях притягивать к себе электроны введено понятие электроотрицательности (ЭО). Учитывая, что эта способность атомов зависит от типа соединений, валентного состояния элемента, эта характеристика имеет условный характер. Однако ее использование полезно для объяснения типа химических связей и свойств соединений.
Имеется несколько шкал электроотрицательности. Согласно Р. Малликену (США), электроотрицательность равна полусумме энергии ионизации и энергии сродства к электрону. Сложность использования подхода Малликена заключается в том, что нет надежных методов количественного определения энергии сродства к электрону. Поэтому Л. Полинг (США) предложил термохимический метод расчета ЭО на основе определения разности энергии диссоциации соединения А-В и образующих его молекул А-А и В-В. Он ввел относительную шкалу электроотрицательности, приняв ЭО фтора, равной четырем.
Электроотрицательность ЭО определяет собой арифметическую сумму энергии ионизации и сродства к электрону и является достаточно полной характеристикой химической активности элементов:
ЭО=I+E (ккал, кдж, эв и др.)
Например, для фтора ЭО=415ккал + 95ккал = 510ккал/моль. Пользуются относительными значениями электроотрицательности ОЭО (по шкале Полинга), для чего значение ЭО лития принимают за единицу сравнения и делят на него значения ЭО других элементов. Например для фтора:
ЭОF 510
= = 4,1
ЭОLi 128
Электроотрицательность элементов (табл. 10) возрастает по периоду и несколько убывает в группах с возрастанием номера периода у элементов I, II, V, VI и VII главных подгрупп, III, IV и V — побочных подгрупп, имеет сложную зависимость у элементов III главной подгруппы (минимум ЭО у А1), возрастает с увеличением номера периода у элементов IV — VIII побочных подгрупп. Наименьшие значения ЭО имеют s-элементы I подгруппы, наибольшие значения — р-элементы VII и VI групп.
Таблица 10
Дата добавления: 2014-12-26; просмотров: 2811;