Микроциркуляция
Микроциркуляторной системой называется совокупность кровеносных сосудов, диаметр которых не превышает 2 мм. Процессы движения крови по сосудам этой системы называются микроциркуляцией. Микроциркуляция включает процессы, связанные с внутриорганным кровообращением, обеспечивающим тканевой метаболизм, перераспределение и депонирование крови.
В состав микроциркуляторной системы входят: терминальная артериола и метартериола, прекапиллярный сфинктер, собственно капилляр, посткапиллярная венула, венула, мелкие вены, артерио-венозные анастомозы.
Каждый компонент микроциркуляторной единицы выполняет определенные функции в процессе микроциркуляции. Так терминальные артериолы, метартериолы и прекапиллярный сфинктер по отношению к капиллярам выполняют транспортную функцию, они приносят кровь к капиллярам и называются приносящими сосудами. Кроме того, они, меняя величину просвета за счет сокращения или расслабления гладкомышечных элементов, регулируют скорость кровотока: увеличение сопротивления току крови (при уменьшении просвета сосуда) уменьшает скорость движения крови, уменьшение сопротивления току крови (при увеличении просвета сосуда) – увеличивает скорость кровотока. Вследствие этого меняется и давление крови в капиллярах.
Капилляры и посткапиллярные венулы называются обменными сосудами, так как в них осуществляются обменные процессы между кровью и интерстициальной жидкостью.
Венулы и мелкие вены – отводящие (емкостные) сосуды, они собирают и отводят кровь, протекающую через обменные сосуды. Сопротивление микроциркуляторному кровотоку со стороны отводящих сосудов влияет на его скорость, величину давления в капиллярах и, следовательно, на интенсивность транссосудистого обмена.
Артерио-венозные анастомозы – с их помощью регулируется кровоток через обменные сосуды. При закрытых анастомозах кровоток через обменные сосуды увеличивается, в результате увеличения давления в артериолах и уменьшения в венуле. При открытых анастомозах кровоток уменьшается в результате уменьшения давления в артериоле и увеличения в венуле. Это сказывается на интенсивности транскапиллярного обмена.
Центральным звеном микроциркуляторной системы являются капилляры. Капилляры являются самыми тонкими и многочисленными сосудами, которые располагаются в межклеточных пространствах. Стенка капилляра состоит из двух слоев: слой эндотелиальных клеток; базальный слой, в которую впаяны клетки – перициты.
Ультраструктура стенки капилляра в различных органах имеет свою специфику (соотношение слоев между собой, характер эндотелиальных клеток и т.д.), что лежит в основе общей классификации капилляров.
Выделяют три типа капилляров. Первый тип – сплошные капилляры (соматические). Стенка капилляров этого типа образована сплошным слоем эндотелиальных клеток, в мембране которых имеются мельчайшие поры. Стенка таких капилляров мало проницаема для крупных молекул белка, но легко пропускает воду и растворенные в ней минеральные вещества. Этот тип капилляров характерен для скелетной и гладкой мускулатуры, кожи, легких, центральной нервной системы, жировой и соединительной ткани.
Второй тип – висцеральные. В стенке капилляров этого типа имеются «окна» (фенестры), которые могут занимать до 30% площади поверхности клетки. Такие капилляры характерны для органов, которые секретируют и всасывают большое количество воды и растворенных в ней веществ, или участвуют в быстром транспорте макромолекул: клубочки почки, слизистая оболочка кишечника, эндокринные железы.
Третий тип – синусоидные. Капилляры этого типа имеют прерывистую эндотелиальную оболочку, клетки эндотелия расположены далеко друг от друга, образуя большие межклеточные пространства. Через стенку таких капилляров легко проходят макромолекулы и форменные элементы крови. Такие капилляры встречаются в костном мозге, печени, селезенке.
Механизм транскапиллярного обмена. Транскапиллярный (транссосудистый) обмен может осуществляться за счет пассивного транспорта (диффузия, фильтрация, реабсорбция), за счет активного транспорта (работа транспортных систем) и микропиноцитоза.
Фильтрационно-абсорбционный механизм обмена между кровью и интерстициальной жидкостью. Этот механизм обеспечивается за счет действия следующих сил. В артериальном отделе капилляра большого круга кровообращения гидростатическое давление крови равно 40 мм рт. ст. Сила этого давления способствует выходу (фильтрации) воды и растворенных в ней веществ из сосуда в межклеточную жидкость. Онкотическое давление плазмы крови, равное 30 мм рт. ст., препятствует фильтрации, т.к. белки удерживают воду в сосудистом русле. Онкотическое давление межклеточной жидкости, равное 10 мм рт. ст., способствует фильтрации – выходу воды из сосуда. Таким образом, результирующая всех сил, действующих в артериальном отделе капилляра, равна 20 мм рт. ст.) и направлена из капилляра. В венозном отделе капилляра (в посткапиллярной венуле) фильтрация будет осуществляться в обратном направлении следующими силами: гидростатическое давление крови, равное 10 мм рт. ст., онкотическое давление плазмы крови, равное 30 мм рт. ст., онкотическое давление межклеточной жидкости, равное 10 мм рт. ст. Результирующая всех сил будет равна 10 мм рт. ст. и направлена в капилляр. Следовательно, в венозном отделе капилляра происходит абсорбция воды и растворенных в ней веществ. В артериальном отделе капилляра жидкость выходит под воздействием силы в 2 раза большей, чем она входит в капилляр в его венозном отделе. Возникающий, таким образом, избыток жидкости из интерстициальных пространств оттекает через лимфатические капилляры в лимфатическую систему.
В капиллярах малого круга кровообращения транскапиллярный обмен осуществляется за счет действия следующих сил: гидростатическое давление крови в капиллярах, равное 20 мм рт. ст., онкотическое давление плазмы крови; равное 30 мм рт. ст., онкотическое давление межклеточной жидкости, равное 10 мм рт. ст. Результирующая всех сил будет равна нулю. Следовательно, в капиллярах малого круга кровообращения обмена жидкости не происходит.
Диффузионный механизм транскапиллярного обмена. Этот вид обмена осуществляется в результате разности концентраций веществ в капилляре и межклеточной жидкости. Это обеспечивает движение веществ по концентрационному градиенту. Такое движение возможно потому, что размеры молекул этих веществ меньше пор мембраны и межклеточных щелей. Жирорастворимые вещества проходят мембрану независимо от величины пор и щелей, растворяясь в ее липидном слое (например, эфиры, углекислый газ и др.).
Активный механизм обмена – осуществляется эндотелиальными клетками капилляров, которые при помощи транспортных систем их мембран переносят молекулярные вещества ионы.
Пиноцитозный механизм обеспечивает транспорт через стенку капилляра крупных молекул и фрагментов частей клеток с помощью эндо- и экзопиноцитоза.
Регуляция местного кровообращения. Сразу подчеркнем, что вопрос этот весьма объемный и остающийся в настоящее время недостаточно хорошо изученным. Здесь приводятся некоторые общие положения, касающиеся известных механизмов регуляции микроциркуляции. В области микроциркуляторного русла основной (базальный или периферический) тонус, который имеет миогенную природу, характерен, прежде всего, для артериол и прекапиллярных сфинктеров. Базальный тонус – это тонус гладких мышц в отсутствии влияния симпатических нервов. Базальный тонус контролируется местными регуляторными механизмами, которые обеспечивают ауторегуляцию микроциркуляторного (органного) кровообращения, реализуемую за счет активности гладких мышц самих сосудов. Это обеспечивает относительную автономность органного (микроциркуляторного) кровообращения, т.к. местные регуляторные механизмы мало зависят от общей нейрогуморальной регуляции.
Растяжение сосуда при возрастании внутрисосудистого давления приводит к усилению его базального тонуса, уменьшению просвета сосуда и уменьшению давления крови и, следовательно, кровотока в участке русла, расположенного за ним по ходу тока крови. В этих условиях (уменьшения кровоснабжения тканей) продукты метаболизма (угольная и молочная кислоты, АМФ, ионы калия), накапливаясь в межклеточной среде, уменьшают сократительную способность мышечных волокон сосудистой стенки, что отражается в снижении тонуса. Вследствие этого увеличивается просвет сосуда, возрастает кровоток, продукты метаболизма удаляются, сосудистый тонус повышается, и кровоток снова уменьшается.
Местная (органная) регуляция сосудистого тонуса, а, следовательно, и кровотока, более выражена по сравнению с общими нейрогуморальными механизмами в условиях относительного покоя организма. В условиях же его выраженной деятельности местная регуляция играет вспомогательную роль, а ведущая принадлежит нервной и гуморальной регуляции.
Нервная регуляция микроциркуляторной системы. Эфферентные нервные волокна заканчиваются на гладких мышечных волокнах артериол и прекапиллярных сфинктеров, а в капиллярах – на перицитах (клетках Руже), которые передают возбуждение на эндотелиальные клетки. В ответ на это эндотелиальные клетки набухают и закрывают капилляр или уплощаются и открывают его. Набухание эндотелиальных клеток приводит к закрытию просвета капилляра в артериальном его отделе, в венозном отделе происходит только его сужение. Набухание (округление) наступает в результате накопления жидкости в клетках под влиянием нервного возбуждения, поступающего к эндотелиальной клетке через перициты. Уплощение эндотелиальной клетки происходит в результате потери ею жидкости также под влиянием перицитов. Кроме того, существует мнение, что перицит – сократительная клетка, способная, подобно мышечной, активно менять просвет капилляра.
Дата добавления: 2014-12-26; просмотров: 3611;