Свойства водяного пара

В качестве реального газа рассмот­рим водяной пар, который широко ис­пользуется во многих отраслях техники, и, прежде всего в теплоэнергетике, где он является основным рабочим телом. По­этому исследование термодинамических свойств воды и водяного пара имеет большое практическое значение.

Во всех областях промышленного производства получили большое применение пары различных веществ: воды, аммиака, углекислоты и др. Из них наибольшее распространение получил водяной пар, яв­ляющийся рабочим телом в паровых турбинах, паровых машинах, в атомных установках, теплоносителем в различных теплообменниках и т. п.

Процесс превращения вещества из жидкого состояния в газообраз­ное называется парообразованием. Испарением называется парообра­зование, которое происходит всегда при любой температуре со свобод­ной поверхности жидкости или твердого тела. Процесс испарения за­ключается в том, что отдельные молекулы с большими скоростями преодолевают притяжение соседних молекул и вылетают в окружающее пространство. Интенсивность испарения возрастает с увеличением температуры жидкости.

Процесс кипения заключается в том, что если к жидкости подводить теплоту, то при некоторой температуре, зависящей от физических свойств рабочего тела и давления, наступает процесс парообразования как на свободной поверхности жидкости, так и внутри её.

Переход вещества из газообразного состояния в жидкое или твердое называется конденсацией. Процесс конденсации, так же как и процесс парообразования, протекает при постоянной температуре, если при этом давление не меняется. Жидкость, полученную при конденсации пара, называют конденсатом.

Процесс перехода твердого вещества непосредственно в пар назы­вается сублимацией. Обратный процесс перехода пара в твердое состоя­ние называется десублимацией.

Процесс парообразования. Основные понятия и определения.Рассмотрим про­цесс получения пара. Для этого 1 кг во­ды при температуре О °С поместим в ци­линдр с подвижным поршнем. Приложим к поршню извне некоторую постоянную силу Р. Тогда при площади поршня Fдавление будет постоянным и равным р = Р/F. Изобразим процесс парообразо­вания, т. е. превращения вещества из жидкого состояния в газообразное, в р,v диаграмме (рис.14).

 

Рис. 14. Процесс парообразования в pv-диаграмме

Начальное состояние воды, находя­щейся под давлением ри имеющей тем­пературу 0 °С, изобразится на диаграм­ме точками a1, a2, a3. При подводе теплоты к воде ее температура постепенно повышается до тех пор, пока не достигнет температу­ры кипения ts, соответствующей данному давлению. При этом удельный объем жидкости сначала уменьшается, дости­гает минимального значения при t = 4°С, а затем начинает возрастать. (Такой аномалией — увеличением плот­ности при нагревании в некотором диа­пазоне температур — обладают немногие жидкости). У большинства жидкостей удельный объем при нагревании увели­чивается монотонно.) Состояние жидко­сти, доведенной до температуры кипения, изображается на диаграмме точками b1, b2, b3.

При дальнейшем подводе теплоты начинается кипение воды с сильным увеличением объема. В цилиндре теперь на­ходится двухфазная среда — смесь воды и пара, называемая влажным насы­щенным паром. Насыщенным называется пар, находящийся в термическом и динамиче­ском равновесии с жидкостью, из кото­рой он образуется. Динамическое равно­весие заключается в том, что количество молекул, вылетающих из воды в паровое пространство, равно количеству молекул, конденсирующихся на ее поверхности. В паровом пространстве при этом равно­весном состоянии находится максималь­но возможное при данной температуре число молекул. При увеличении темпера­туры количество молекул, обладающих энергией, достаточной для вылета в па­ровое пространство, увеличивается. Рав­новесие восстанавливается за счет воз­растания давления пара, которое ведет к увеличению его плотности и, следова­тельно, количества молекул, в единицу времени конденсирующихся на поверхности воды. Отсюда следует, что давление насыщенного пара является монотонно возрастающей функцией его температу­ры, или, что то же самое, температура насыщенного пара есть монотонно воз­растающая функция его давления.

При увеличении объема над повер­хностью жидкости, имеющей температу­ру насыщения, некоторое количество жидкости переходит в пар, при уменьше­нии объема «излишний» пар снова пере­ходит в жидкость, но в обоих случаях давление пара остается постоянным.

Если парообразование жидкости происходит в неограниченном пространстве, то вся она может превратиться в пар. Если же паро­образование жидкости происходит в закрытом сосуде, то вылетающие из жидкости молекулы заполняют свободное пространство над ней, при этом часть молекул, движущихся в паровом пространстве над по­верхностью, возвращается обратно в жидкость. В некоторый момент между парообразованием и обратным переходом молекул из пара в жидкость может наступить равенство, при котором число молекул, вылетающих из жидкости, равно числу молекул, возвращающихся обратно в жидкость. В этот момент в пространстве над жидкостью бу­дет находиться максимально возможное количество молекул. Пар в этом состоянии принимает максимальную плотность при данной тем­пературе и называется насыщенным.

Таким образом, пар, соприкасающийся с жидкостью и находящий­ся в термическом с ней равновесии, называется насыщенным. С изме­нением температуры жидкости равновесие нарушается, вызывая со­ответствующее изменение плотности и давления насыщенного пара.

 

Двухфазная смесь, представляющая собой пар с взвешенными в нем капель­ками жидкости, называется влажным насыщенным паром. Таким образом, влажный насыщенный водяной пар можно рассматривать как смесь сухого насыщенного пара с мельчайши­ми капельками воды, взвешенными в его массе.

Массовая до­ля сухого насыщенного пара во влажном называется степенью сухости па­ра и обозначается буквой х. Массовая доля кипящей воды во влажном паре, равная 1—х, называется степенью влажности. Для кипящей жидкости x = 0, а для сухого насыщенного пара х= 1. Состояние влажного пара характе­ризуется двумя параметрами: давлением (или температурой насыщения ts, опре­деляющей это давление) и степенью су­хости пара.

По мере подвода теплоты количество жидкой фазы умень­шается, а паровой — растет. Температу­ра смеси при этом остается неизменной и равной ts,так как вся теплота расходу­ется на испарение жидкой фазы. Следо­вательно, процесс парообразования на этой стадии является изобарно-изотермическим. Наконец, последняя капля во­ды превращается в пар, и цилиндр ока­зывается заполненным только паром, ко­торый называется сухим насыщен­ным.

Насыщенный пар, в котором отсут­ствуют взвешенные частицы жидкой фа­зы, называется сухим насыщенным паром. Его удельный объем, и темпера­тура являются функциями давления. По­этому состояние сухого пара можно за­дать любым из параметров — давлением, удельным объемом или температурой.

Состояние его изображается точ­ками c1, с2, с3.

Точками изображается перегретый пар. При сообщении сухому пару теплоты при том же давлении его температура будет увеличиваться, пар будет перегре­ваться. Точка d (d1, d2, d3) изображает состояние перегретого пара и в зависимости от температуры пара может лежать на разных расстояниях от точки c.

Таким образом, перегретым называется пар, температура которого превышает температуру насыщенного пара того же давления.

Так как удельный объем перегретого пара при том же давлении больше, чем насыщенного, то в единице объема пере­гретого пара содержится меньшее коли­чество молекул, значит, он обладает меньшей плотностью. Состояние перегретого пара, как и любого газа, определя­ется двумя любыми независимыми пара­метрами.

Процесс получения сухого насыщенного пара при постоянном давлении изображается в общем случае графиком abc, а перегретого пара в общем случае — графиком abсd, при этом ab — процесс подогрева воды до температуры кипения, bс — процесс парообразования, протекающий одновременно при постоянном давлении и при постоянной температуре, т. е. процесс bс являет­ся изобарным и одновременно изотермическим и, наконец, cd — процесс перегрева пара при постоянном давлении, но при воз­растающей температуре. Между точками b и с находится влаж­ный пар с различными промежуточными значениями степени сухости.

Кривая I холодной воды изображается линией, параллельной оси ординат, если исходить из предположения, что вода несжи­маема и, следовательно, удельный объем воды почти не зависит от давления. Кривую II называют нижней пограничной кривой, или кривой жидкости, а кривую III — верх­ней пограничной кривой, или кривой сухого насыщенного пара. Кривая II отделяет на диаграмме область жидкости от области насыщенных паров, а кривая III — область насыщенных от области перегретых паров.

Точки а1, а2 и а3, изображающие состояние 1 кг холодной воды при температуре 0°С и разных давлениях, располагаются прак­тически на одной вертикали. Точки b1, b2 и b3 с увеличением дав­ления смещаются вправо, так как при этом соответственно уве­личиваются также температуры кипения tH и, следовательно, удельные объемы кипящей воды. Точки c1, с2 и с3 смещаются влево, так с увеличением давления удельный объем пара умень­шается несмотря на возрастание температуры.

Из pv -диаграммы видно, что с повышением давления точки b1, b2 и b3 и c1 с2 и с3 сближаются, т. е. постепенно уменьшается разность удельных объемов сухого насыщенного пара и кипящей воды (отрезки bc). Наконец, при некотором давлении эта раз­ность становится равной нулю, т. е. точки б и с совпадают, а ли­нии II и III сходятся. Точка встречи обеих кривых называется критической точкой и обозначается буквой k. Состояние, соответствующее точке k, называется критическим со­стоянием.

Параметры водяного пара критического состояния следую­щие: давление рк = 225,65 ата; температура t = 374,15° С, удель­ный объем vK = 0,00326 м3/кг.

В критической точке кипящая вода и пар имеют одинаковые параметры состояния, а изменение агрегатного состояния не сопровождается изменением объема. Иными словами, в крити­ческом состоянии исчезает условная граница, разделяющая эти две фазы вещества. При температурах, выше критической (t > tK), никаким повышением давления перегретый пар (газ) не может быть обращен в жидкость.

Критическая температура — это мак­симально возможная температура сосу­ществования двух фаз: жидкости и на­сыщенного пара. При температурах, больших критической, возможно су­ществование только одной фазы. Назва­ние этой фазы (жидкость или перегретый пар) в какой-то степени условно и определяется обычно ее температурой. Все газы являются сильно перегретыми сверх Tкр парами. Чем выше температура перегрева (при данном давлении), тем ближе пар по своим свойствам к идеаль­ному газу.

 

 








Дата добавления: 2014-12-24; просмотров: 6233;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.007 сек.