Акустические методы

Акустические методы основаны на возбуждении упругих механи­ческих колебаний. По параметрам этих колебаний и условиям их распро­странения судят о физико-механических характеристиках и состоянии ис­следуемого материала.

В зависимости от частоты колебаний акустические методы делятся на ультразвуковые (при частотах от 20 тыс. Гц и выше) и методы, основанные на использовании колебаний звуковой (до 20 тыс. Гц) и инфразвуковой (до 20 Гц) частот.

 

3.4.1. Ультразвуковые методы

 

Возбуждение и прием колебаний. Для возбуждения ультразвуко­вых волн на поверхности исследуемого материала устанавливают преобра­зователи переменного электрического тока, создающие колебания. Чаще всего применяются преобразователи, действующие по принципу пъезоэффекта. При этом для возбуждения колебаний используется так называемый «обратный», а в преобразователях для приема колебаний - «прямой» пьезоэффекты.

Поскольку воздушные прослойки препятствуют передаче и приему ультразвуковых колебаний, между преобразователями и исследуемым ма­териалом наносят контактирующую среду. Для металла применяют обыч­но минеральное масло, для бетона и других материалов с неровной поверх­ностью необходимы смазки более густой консистенции - солидол, техниче­ский вазелин, эпоксидные смолы и т.д.

Условия прохождения ультразвуковых волн. Ультразвуковые коле­бания могут быть введены в исследуемую среду узким направленным пуч­ком - «лучом» с малым углом расхождения. Колебания частиц происходят при этом лишь в локализованном объеме материала, ограниченном конту­рами пучка, а исследуемый же элемент в целом остается неподвижным. Эта возможность прозвучивания материала в заданных направлениях является весьма существенной при проведении исследований.

Ультразвуковые волны, переходя из одной среды в другую, пре­ломляются, а также отражаются от граней, разделяющих эти среды, что используется для определения их распространения при данном методе кон­троля. В воздушных прослойках ультразвуковые колебания затухают почти полностью, что позволяет выявлять и исследовать скрытые внутренние де­фекты: трещины, расслоения, пустоты и т.д.

Различают продольные и поперечные волны. В первом случае час­тицы материала колеблются по направлению ультразвукового луча, а во втором - перпендикулярно к нему. Используют также поверхностные вол­ны, как продольные, так и поперечные, распространяющиеся лишь в по­верхностном слое материала и позволяющие, например в металле, обнару­живать самые мелкие поверхностные повреждения. Скорость распростра­нения волн (своя для каждого из указанных видов материалов) является од­ним из основных показателей при оценке физико-механических характери­стик и состояний бетона, древесины и других материалов с переменными плотностью и влажностью.

Способы прозвучивания. По направлению ультразвуковых волн различают два основных приема прозвучивания.

Сквозное - когда излучатель, возбуждающий колебания, и при­емник, воспринимающий их, расположены с противоположных сторон ис­следуемого объекта (рис.3.5, а, б). Направление ультразвукового луча по отношению к поверхности материала может при этом быть как нормаль­ным, так и наклонным, а также с использованием отражения или «эхо-метода», когда излучатель и приемник располагаются на одной и той же стороне (рис.3.5, в), что особенно существенно при возможности лишь од­ностороннего доступа к объекту. Кроме того, эхо-метод удобен при исполь­зовании не двух, а одного приемо-передающего преобразователя, который последовательно посылает упругие волны и сам же принимает их отраже­ния.

 

 

 

Рис.3.5. Способы прозвучивания:

а - сквозное прозвучивание нормально к поверхности элемента; б - диагональное прозвучивание; в - эхо-метод;

1 - прозвучиваемый элемент; 2 - излучающая пьезоэлектрическая пластинка; 3 - пьезопластинка, воспринимающая колебания; 4 - призма из оргстекла; 5 - направление прозвучивания; 6 - выявляемый дефект; 7 - теневая зона

По характеру излучения необходимо различать:

1) метод непрерывного излучения с подачей к излучателю колеба­ний переменного тока постоянной частоты; по такому принципу были раз­работаны первые дефектоскопы (С.Я. Соколов, 1928г.) для выявления де­фектов в материале по направлению звуковой тени (рис. 3.5, в);

2) импульсный метод, получивший сейчас самое широкое приме­нение как наиболее эффективный при исследованиях бетона, при дефекто­скопии сварных швов металлоконструкций и др. В этом случае к преобра­зователю через определенные достаточно малые промежутки времени, на­пример, 25 или 50 раз в 1 сек, подаются короткие серии («пакеты») колеба­ний высокой частоты.

Регистрация ультразвуковых колебаний производится с помощью специальной аппаратуры. Наиболее распространенной является передача электрических колебаний от приемного преобразователя через усилитель на экран электроннолучевой трубки катодного осциллографа. С большой точностью при этом могут быть определены скорость прохождения ультра­звуковых колебаний через исследуемый материал, интенсивность их зату­хания, а также другие показатели, используемые при оценке результатов измерений.

 

3.4.2. Область применения ультразвуковых методов

3.4.3.

Определение динамического модуля упругости. Скорость распро­странения упругих колебаний v связана с динамическим модулем упруго­сти Един и плотностью р проверяемого материала соотношением

 

 

Глубину трещины находим из соотношения

 

где скорость v определяется обычно на неповрежденных участках поверх­ности.

По указанному методу могут быть исследованы трещины глубиной до нескольких метров.

 

 

 

Рис. 3.7. Определение глубины поверхностной трещины в бетоне:

1 - бетонный массив; 2 - трещина; А - излучающий и В - приемный преобразователи

 

 

Следует, однако, иметь в виду следующее:

1) значения v на поверхности и в глубине массива могут несколько отличаться;

2) длина пути АСЕ немного возрастет в случае невертикальности трещины и, наоборот, может существенно уменьшиться при наличии в тре­щине воды, являющейся хорошим проводником ультразвуковых волн.

В ответственных случаях возможно получить данные для глубоких трещин. Отметим также другие практически наиболее важные области применения ультразвуковых методов.

 

В бетонных и железобетонных конструкциях производится:

- определение прочности бетона по корреляционным зависимо­стям между скоростью распространения ультразвуковых волн и прочно­стью бетона на сжатие, устанавливаемым путем параллельных ультразвуко­вых и прочностных испытаний образцов бетона заданного состава и режи­ма изготовления (при контроле вновь изготовляемых конструкций и дета­лей) или образцов, извлеченных из возведенных сооружений. В случае не­возможности отбора образцов из уже эксплуатируемых конструкций ориен­тировочное определение прочности бетона возможно по тарировочной за­висимости;

- контроль однородности бетона в сооружениях;

- выявление и исследование дефектов в бетоне сквозным прозвучиванием (возможным и при значительных толщинах бетона - до 10м и более) и путем измерений на поверхности конструкций. О наличии и харак­тере дефектов и повреждений судят при этом по изменениям скорости про­хождения ультразвуковых волн в пределах отдельных участков поверхно­сти (так называемый метод годографа, т. е. графика скоростей);

- определение толщины верхнего ослабленного слоя бетона, распо­ложения слоев разной плотности и т. п.

Наличие арматуры в железобетонных конструкциях не мешает применению ультразвуковых методов, если направление прозвучивания не пересекает арматурные стержни и не совпадает с ними.

В металлических конструкциях:

- импульсная дефектоскопия швов сварных соединений в стальных и алюминиевых конструкциях;

- дефектоскопия основного материала;

- толщинометрия (определение толщин защитных металлических покрытий; выявление ослабления сечений коррозией).

В деревянных конструкциях и конструкциях с применением пластмасс:

- проверка физико-механических характеристик,

- проверка качества и дефектоскопия основного материала;

- дефектоскопия клеевых соединений и стыков.

 

3.4.4. Импульсные звуковые методы

 

Метод «ударной волны».Он основан на изменении скорости рас­пространения единичных импульсов, возбуждаемых ударом легкого молотка или специальными приспособлениями, например электрического действия, для нанесения небольших ударов заданной силы. Для приема и регистрации сигналов может быть использована та же аппаратура, что и при ультразву­ковом импульсном методе.

Этот метод используется для контроля асфальтового и цементного бетонов в дорожных и аэродромных покрытиях и может быть применен также для испытания длинномерных (до 30 м) бетонных и железобетонных элементов.

Вибрационный метод.Данный метод основан на использовании колебаний звуковой частоты и применяется при испытаниях образцов бето­на (рис.3.8).

Рассматриваемый метод полезен при сооружении дорожных и аэ­родромных покрытий для получения быстрой и надежной информации о ходе технологического процесса и может также быть положен в основу ав­томатического управления.

При этом о характеристиках материала судят по частотам, соответ­ствующим резкому увеличению измеряемых амплитуд при наступлении

 

Рис.3.8.Испытание образцов бетона резонансным методом:

а - возбуждение продольных; 6 и в - изгибных колебаний;

1 - испытуемый образец; 2 – пьезопреобразователи

 

Метод «бегущей волны».При этом оригинальном методе к реги­стрирующему прибору, помимо сигналов, воспринимаемых приемным пре­образователем, подводятся также сигналы генератора, возбуждающего не­прерывные колебания. В результате сложения этих сигналов на экране электронно-лучевой трубки появляются характерные изображения фигур Лиссажу. Меняя частоту в пределах ультразвукового и звукового диапазо­нов, а также положение и тип приемных преобразователей, можно наблю­дать изображения, соответствующие продольным, поперечным и поверхно­стным волнам и по ним оценивать характеристики материала на разной глубине его нахождения.

 








Дата добавления: 2014-12-24; просмотров: 3142; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2022 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.011 сек.