Маршрути незамкнені (ланцюги, шляхи) і замкнені (цикли, контури). Повнота. Зв’язність. Сильна зв’язність

 

Коли задають або шукають певну послідовність ребер (дуг), то говорять про маршрути у графах..

Означення 2.1.13. Скінченну послідовність ребер (дуг) графа (не обов’язково різних) називають маршрутом довжини п, якщо існує послідовність вершин (не обов’язково різних), таких що .

Вершини і називають кінцевими або термінальними.

Означення 2.1.4. Маршрут називають відкритим або незамкненим, якщо і замкненим у протилежному випадку.

Означення 2.1.5. Незамкнений маршрут, у якого немає ребер (дуг), що повторюються, називають ланцюгом для неорієнтованого і шляхом для орієнтованого графа.

Означення 2.1.6. Замкнений маршрут, у якого немає ребер (дуг), що повторюються, називають циклом для неорієнтованого і контуром для орієнтованого графа.

Кажуть, що граф ациклічний або без контурний, якщо він не має циклів чи контурів.

Наприклад,

– незамкнений маршрут;

– замкнений маршрут;

– ланцюг;

– цикл.

 

Граф називають повним, якщо будь-які його дві вершини суміжні.

Орієнтований граф G=(Х,Г) називають повним, якщо з того, що слідує, що .

Означення 2.1.7. Неорієнтований граф G=(Х,Г) називають зв’язним, якщо в ньому існує ланцюг між кожною парою вершин.

Властивості зв’язних графів:

1) граф зв’язний тоді і тільки тоді, коли множину його вершин не можна розбити на дві непорожні підмножини та так, що дві граничні точки кожного ребра були в одній і тій самій множині;

2) у зв’язному графі довільні два шляхи максимальної довжини мають спільну вершину;

3) якщо граф G=(Х,Г) – зв’язний, то граф G’=(Х,Г-u), отриманий в результаті видалення циклічного ребра и, також зв’язний.

Означення 2.1.8. Орієнтований граф називають зв’язним, якщо зв’язним є неорієнтований граф, що лежить в його основі.

Означення 2.1.9. Орієнтований граф G=(Х,Г) називають сильно зв’язним, якщо для кожної пари різних вершин і існує шлях з до і навпаки – з до .








Дата добавления: 2014-12-22; просмотров: 1376;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.