Нуклеотидный состав оснований ДНК разных организмов
Организмы | Среднее значение содержания ГЦ в % |
Вирусы | 28-74 |
Бактерии | 26-74 |
Водоросли | 36-68 |
Грибы | 36-54 |
Высшие растения | 36-48 |
Простейшие | 22-62 |
Беспозвоночные | 34-44 |
Позвоночные | 40-44 |
Для ДНК характерна структура трех видов — первичная, вторичная и третичная. Первичная структура ДНК заключается в том, что ДНК состоит из нуклеотидных цепей, у которых скелетную основу составляют чередующиеся сахарные и фосфатные группы, объединенные ковалентными 3'-, 5'-фосфодиэфирными, скелетными связями, а боковые группы представлены тем или иным основанием (одним из четырех) и присоединяются одна к другой молекулой сахара. Последовательно располагающиеся нуклеотиды ковалентно связаны фосфодиэфирными связями между сахарным остатком и фосфатом, и в результате этого объединены в полинук-леотидную цепь. Таким образом, первичная структура ДНК (как и РНК) определяется последовательностью нуклеотидов и характером их связей между сахарным остатком и фосфатом.
Представления о вторичной структуре ДНК (рис. 107) были сформулированы Д. Уотсоном и Ф. Криком еще в 1953 г. На основе данных об Х-дифракции молекул ДНК, структуре оснований и правил А. Чаргаффа эти представления сводятся к следующему:
1. Молекула ДНК построена из двух скрученных направо спиралевидных полинуклеотидных цепей, причем каждый виток спирали соответствует 10 азотистым основаниям или расстоянию в 3,4 нм. Молекулы ДНК, цепи которых скручены направо, первоначально назвали В-формой.
2. Обе цепи объединены в результате закручивания одной цепи вокруг другой по общей оси. Из-за противоположной последовательности атомов в каждой цепи обе цепи инвертированы относительно одна другой, т. е. направление вдоль дуплекса есть 3' ® 5' для одной цепи и 5' ® 3' для другой.
3. Сахарофосфатные группы располагаются на внешней стороне двойной спирали, тогда как основания находятся внутри спирали под прямым углом и вдоль ее оси. Диаметр молекулы составляет 2 нм, расстояния между отдельными азотистыми основаниями в молекуле равны 0,34 нм. Таким образом, ДНК представляет собой скрученную в правостороннем направлении двойную спираль, в которой пары азотистых оснований А—Т и Г-Ц в комплементарных полинуклеотидных цепях подобны перекладинам в лестнице, а сахарофосфатные цепи являются каркасом этой лестницы.
4. Цепи в молекуле не идентичны, но комплементарны и удерживаются слабыми водородными связями между азотистыми основаниями, причем спаривание азотистых оснований для связывания цепей имеет специфический характер. Водородные связи устанавливаются не просто между азотистыми основаниями цепей, а специфически между пуриновым азотистым основанием одной цепи и пиримидиновым азотистым основанием другой. В результате этого аденин одной из цепей связывается с тимином другой цепи двумя водородными связями, тогда как гуанин одной из цепей связывается с цитозином, находящимся в другой цепи, посредством трех водородных связей.
Таблица 12
Свойства разных конформационных форм ДНК
Свойство | Формы спиралей | |||
А | В | С | Z | |
Направление скрученное™ | вправо | вправо | вправо | влево |
Диаметр молекулы | 23 А̊ | 19 А̊ | 19 А̊ | 18 А̊ |
Количество оснований в витке | 91/3 |
Дезоксирибозные остатки пар А-Т и Г-Ц разделены одинаковыми расстояниями. Для сахарофосфатных скелетных связей характерна полярность, поскольку фосфат связывает группу 3'-ОН одной дезоксирибозы с группой 5'-ОН другой, тогда как комплементарные цепи имеют противоположную полярность.
Двойная спираль имеет упорядоченный характер, поскольку каждая связь основание-сахар имеет одинаковое расстояние от оси спирали и перевернута на 36°. Как видно, вторичная структура отражает собой форму нуклеиновой кислоты.
Исследования рентгеновской дифракции молекул ДНК показали, что количество оснований в витках закрученной направо спирали может составлять не только 10, как у В-формы, но и 11, а то и ОУз оснований. Эти формы спиралей получили название А- и С-форм. Установлено также, что в молекулах ДНК встречаются районы, цепи в которых закручены налево. Эти районы получили название Z-форм. Различия между А-, В-, С- и Z-формами приведены в табл. 12, однако степень регулярности и конформации Z-формы еще не выяснена.
Степень суперскручивания ДНК зависит от ферментов, в частности от динамического баланса между взаимоантагонистическими ферментами ДНК — гиразой, которая ответственна за суперскручивание и ДНК — топоизомеразой I, которая устраняет суперскручивание.
Третичная структура ДНК связана с трехмерной пространственной конфигурацией молекул и зависит от внутримолекулярных условий. Однако эта структура достаточно еще не изучена.
Размеры молекул ДНК обычно устанавливают определением молекулярной массы в дальтонах и длины в количестве пар оснований. Молекулярная масса пары А-Т составляет 617 дальтон, пары Г-Ц — 618 дальтон. Молекулярная масса 1000 пар азотистых оснований (1 килобаса) составляет 617 500 дальтон или 6,175´105/6,02×1023 г = 1,026×10-18 г = 1,026´10-6 пикограммов (пг), 1 пг ДНК = 9,75´105 килобасов = 0,975 х 106 килобасов.
Препараты ДНК, выделяемой из клеток с помощью обычных методов, имеют молекулярную массу порядка 1,0´107. Длина витка по оси ДНК В-формы равна 34 А̊. Расстояние между парами оснований в ДНК В-формы Е. coli равно 0,34 нм.
Для характеристики строения ДНК используют также такие физические константы, как плотность ее при центрифугировании в градиенте тяжелых металлов, а также температура плавления; первая константа отражает полидисперсность препаратов ДНК, тогда как вторая — их гетерогенность. Нагревание ДНК в растворах разрывает водородные связи между основаниями в парах и разрушает вторичную структуру ДНК, т. е. вызывает плавление ДНК. В 0,1 М раствора NaCI плавление наступает при 95°С.
Плавление ДНК есть ее денатурация. Однако замечательное свойство денатурированной ДНК заключается в том, что она способна к денатурации in vitro, т. е. способна восстанавливать двухцепочечную структуру, причем ренатурация является очень точной. Две цепи денатурированной ДНК могут ренатурировать в природную двухцепочечную спиральную форму, если их последовательности комплементарны или, другими словами, если последовательности цепей позволяют формирование пар оснований, соединенных водородными связями. Ренатурацию можно оценить и в качестве гибридизации ДНК.
Между тем способность самокомплементарных последовательностей к гибридизации и формированию двухцепочечной спирали присуща на только ДНК, но и РНК. В результате этого in vitro можно конструировать двухцепочечные гибридные структуры РНК-РНК или РНК-ДНК. Способность нуклеиновых кислот к ре-натурации имеет значение в изучении специфики отдельных последовательностей, а также в таксономии.
В зависимости от локализации ДНК в клетке различают ядерные (хромосомные) и экстраядерные (экстрахромосомные) детерминанты наследственности. Кроме того, известны транспозируемые генетические элементы (инсерционные последовательности, транспо-зоны и др.).
Дата добавления: 2014-12-20; просмотров: 1904;