Электрошлаковое литье в охлаждаемый кокиль.
Несмотря на все разнообразие методов точного литья, вес и габариты последнего ограничены, и до недавнего времени не существовало способа, позволяющего получать сложные крупнотоннажные узлы повышенной точности и удовлетворительного качества. Чем сложнее и тяжелее узел, тем больше преимуществ имеет литье как метод формообразования. Однако качество литья, как правило, ухудшается по мере увеличения веса заготовки. Это объясняется рядом факторов. Прежде всего при большой массе отливки и, как следствие, малой скорости теплоотвода особенно в песчано-глинистых формах, которые обычно используют в производстве крупного литья, резко возрастает продолжительность контакта расплава с формой, развиваются ликвационные процессы. Кроме того, в процессе заливки форм имеют место вторичное окисление, эрозия литниковой системы, механический захват газов и еще целый ряд процессов, ухудшающих качество металла и снижающих точность отливки.
В целом можно считать, что качество литого металла, как правило, хуже качества деформированных заготовок.
В нашей стране был разработан принципиально новый метод, открывающий широкие перспективы получения крупных отливок с высоким уровнем свойств и с повышенной точностью размеров. Он назван электрошлаковым литьем и представляет дальнейшее развитие метода электрошлакового переплава (ЭШП). По своим свойствам металл, подвергнутый злектрошлаковому литью, не уступает кованому. Металл ЭШП отличает даже большая плотность, стабильность свойств и изотропность (свойства металла в продольном и поперечном направлении сближаются).
Специфическая особенность ЭШП — практически полное сохранение исходного состава при литье. Однако количество, размеры и состав неметаллических включений существенно меняются. Второй важный момент—кристаллизация металла в водоохлаждающем кокиле.
После ЭШП литая сталь не уступает деформированной стали обычной выплавки по такому показателю, как критическая температуры хрупкости, и сопротивляемость разрушению.
Одно из его достоинств — возможность электрохимического модифицирования, т. е. обеспечение перехода из шлака в металл таких элементов, как магний, кальции и др., ввести которые в расплав затруднительно. А вследствие высокой чистоты металла даже обычные добавки, например редкоземельные металлы (РЗМ), дают в данном случае больший эффект и экономически оправданы, так как большая доля РЗМ расходуется по прямому назначению —для модифицирование:, а не на удаление серы и кислорода.
Технологические возможности электрошлаковых процессов велики, они допускают обработку кристаллизующегося расплава вибрацией, ультразвуком, электромагнитными полями, введение металлических порошков дня создания дополнительных центров кристаллизации и т. д.
При отливке особо сложных тяжелых деталей, например сосудов высокого давления, по обычной технологии никогда нет полной уверенности до окончания механической обработки в качестве изделия. Часто после трудоемких операций отливки многотонной детали и ее обработки на металлорежущих станках выявляются неустранимые дефекты литья: поры, трещины, неметаллические включения, неоднородность структуры.
Обычная технология отливки в земляные формы в принципе не способна ликвидировать неопределенность конечного результата. Другое дело злектрошлаковое литье В этом случае вместо земляной формы используют металлический охлаждаемый кристаллизатор, предельно близкий по размерам и геометрии к отливаемой детали.
Злектрошлаковым переплавом можно изготавливать 100— 50-тонные бандажи цементных печей диаметром до 6 —7 м, толстостенные сосуды и другое тяжелое оборудование.
Непрерывное литье
Сущность процесса непрерывного литья заключается в следующем. Жидкий сплав равномерно и непрерывно поступает в охлаждаемую водой металлическую форму-кристаллизатор, где затвердевает в заготовку, наружный профиль которой соответствует форме кристаллизатора. С помощью тянущего устройства заготовка непрерывно вытягивается. Одновременно под действием напора кристаллизатор заполняется свежими порциями сплава. Таким образом, процесс протекает непрерывно. Кристаллизация сплава происходит благодаря отдаче теплоты через стенки кристаллизатора.
К преимуществам непрерывного литья следует отнести; возможность получения слитка, трубы или профиля теоретически неограниченной длины; высокие механические свойства отливок; улучшение поверхности отливки. Наряду с преимуществами этот способ изготовления отливок имеет недостаток, заключающийся в образования значительных внутренних напряжений в отливке вследствие резкого ее охлаждения. Чем больше скорость литья, неравномерное поступление сплава в кристаллизатор и вытягивание заготовки, тем больше опасность возникновения трещин.
Несмотря на многие преимущества, непрерывное и полунепрерывное литье имеет ряд органических недостатков. Прежде всего сравнительно низкая скорость вытягивания, ибо воздушный промежуток между отливкой и стенками охлаждаемого кристаллизатора создает значительное тепловое сопротивление и не позволяет увеличить теплоотвод даже при интенсификации охлаждения.
Дата добавления: 2017-03-29; просмотров: 526;