Морозостойкость плотных и пористых материалов
В строительном материаловедении понятие «морозостойкость» связывают с воздействием на материал двух основных факторов:
- влияние низких температур - для абсолютно плотных материалов (стекло, металлы, полимерные изделия и др.);
- совокупное влияние низких температур и воды - для материалов мелкопористой структуры (природные и искусственные каменные материалы, в том числе строительная керамика, бетоны, растворы и др.).
Таким образом, для плотных материалов морозостойкость — способность материала сохранять эксплуатационные свойства при низких температурах. К таким материалам предъявляются требования в зависимости от их назначения с учетом условий эксплуатации. В большинстве случаев основным требованием является сохранение целостности структуры.
Механизм разрушения структуры материала при перепадах температуры связан с явлением расширения — сжатия и изменением упругих свойств материала. При низких температурах материал становится более хрупким, ломким; резко снижается его ударная прочность.
Это в большей степени относится к полимерным материалам и металлам.
Морозостойкость природных и искусственных каменных материалов — способность материала выдерживать многократное попеременное замораживание и оттаивание в насыщенном водой состоянии (без видимых признаков разрушения и допустимого понижения прочности).
Разрушительное воздействие мороза на ограждающую конструкцию можно условно разделить на три основных периода: водонасыщение, промерзание и, собственно, разрушение.
В наиболее влажный период года происходит водонасыщение поверхностного слоя ограждающей конструкции
Рис. 6.1. Распределеление температуры в наружной стене здания (а) и заполнение пор водой (б) вблизи наружной поверхности:
1 - адсорбированная вода; 2 - конденсат; З - устье; 4 - дождевая вода
При понижении температуры окружающей среды наружные слои конструкции постепенно охлаждаются, фронт низких температур распространяется внутрь конструкции. Водяной пар, находящийся в противоположной зоне конструкции, перемещается от тепла к холоду, поскольку давление влажного воздуха при отрицательной температуре ниже, чем при положительной. Попадая в зону низких температур, водяной пар конденсируется в порах, вблизи наружной поверхности ограждающей конструкции (рис. 6.1.).
При наступлении даже небольших морозов (-5..-8оС) вода, находящаяся в крупных порах, замерзая и превращаясь в лед, создает напряженное состояние в материале.
Механизм разрушения структуры пористых тел при замораживании Существует несколько гипотез, объясняющих причины разрушения структуры материала при замораживании: - вода, находящаяся в крупных порах материала при температуре ниже 0,01оС, превращается в лед с увеличением в объеме около 9%. Если при этом коэффициент насыщения приближается к 1, то в стенках пор могут возникнуть растягивающие напряжения, являющиеся основной причиной разрушения структуры; - давление расширения воды при замерзании заставляет мигрировать еще не замерзшую воду, создавая большое гидростатическое давление, которое усиливает напряжения на стенки сообщающихся пор; - перемещение незамерзшей воды в направлении поверхности из тонких пор в крупные в момент образования в них льда и понижение при этом давления пара (эффект вспучивания грунта при замерзании). Анализируя вышеперечисленные гипотезы, отметим, что, несмотря на некоторые противоречия (например, между двумя последними причинами в плане направления миграции воды), главным фактором разрушения следует признать изменение фазового состояния воды при изменении температуры или давления. С точки зрения термодинамики, процесс замораживания сопоставим с процессом сушки пористых материалов по двум основным положениям: - изменение агрегатного состояния воды или установление равновесного состояния «вода —лед» при замораживании и «вода — пар» при сушке (рис. 4.31); - возникновение массообменных процессов внутри материала в результате высоких градиентов давлений над водой при замораживании и высоких градиентов влажности при сушке. Известно, что процесс диффузии влаги внутри материала при сушке зависит от характеристики структуры материала и свойств воды, а также градиентов температуры, влажности и давления. Проводя аналогию между процессами диффузии влаги при сушке и замораживании материалов, отметим следующие основные моменты: - если при сушке основной движущей силой влагопроводности является градиент влажности, который во многом зависит от интенсивности испарения воды, то при замораживании — градиент давления, который зависит от изменения температур и скорости кристаллизации воды; - направление движения влаги в обоих случаях одинаковое — в сторону расположения критической точки превращения воды: в первом случае — в пар, во втором — в лед, т. е. к поверхности; - роль воздуха в пористой структуре материала в двух этих процессах неодинаковая, но положительная: при сушке, особенно во время интенсивного нагрева, влага в порах испаряется и за счет избыточного давления пара увеличивает диффузию, а при замораживании наличие свободного воздушного пространства уменьшает гидростатическое давление и снижает напряжение в материале. |
Дата добавления: 2018-06-28; просмотров: 608;