Принцип системной организации интегративной деятельности мозга

 

Представление о функции мозга как о результате динамической интеграции различных структур, выполняющих определенную, специфическую роль в формировании целостной деятельности мозга, впервые было сформулировано И. М. Сеченовым в 1863 г. Это представление, получившее дальнейшее развитие в трудах выдающихся физиологов И.П.Павлова, А.А.Ухтомского, Н.А.Бернштейна, П. К.Анохина, стало приоритетным в отечественной физиологии, послужив основой для объяснения механизмов целенаправленного поведения и мозговой организации психических процессов.

Высшая нервная деятельность. В учении о высшей нервной деятельности, созданном И.П.Павловым, огромное внимание уделяется нейрофизиологическим процессам, обеспечивающим приспособительные реакции организма на воздействия внешнего мира. Высшая нервная деятельность, согласно учению И.П.Павлова, — это совокупность сложных форм деятельности коры больших полушарий и ближайших к ним подкорковых структур, обеспечивающих взаимодействие целостного организма с внешней средой. В качестве нервного механизма, обеспечивающего реагирование на внешние воздействия, рассматривался условный рефлекс. В отличие от безусловных рефлексов, являющихся врожденными, сформировавшимися в ходе эволюции и передающимися по наследству, условные рефлексы возникают, закрепляются и угасают (если утрачивают свое значение) в течение жизни. Условные рефлексы могут образовываться на любые сигналы, реализуясь при участии высших отделов нервной системы. От стабильных безусловных условные рефлексы отличаются изменчивостью. В течение жизни индивидуума иные из них, утрачивая свое значение, угасают, другие вырабатываются. Образование условного рефлекса связано с установлением временной связи между двумя группами клеток коры: между воспринимающими условное и воспринимающими безусловное раздражение. Эта связь становится тем прочнее, чем чаще одновременно возбуждаются оба участка коры. После нескольких таких сочетаний связь оказывается настолько прочной, что потом при воздействии одного лишь условного раздражителя возбуждение возникает и во втором очаге.

В настоящее время образование временной связи между двумя корковыми центрами при выработке условного рефлекса рассматривается как один из механизмов внутрицентрального взаимодействия, обеспечивающего формирование навыка и поведение индивида. В условиях реального существования организма условный рефлекс является элементом, включенным в сложную целостную деятельность мозга — интегративную деятельность. Наличие сложной системы внутрикорковых и корково-подкорковых связей создает основу для более сложного взаимодействия нервных центров. Интегративная деятельность мозга в каждый момент времени осуществляется структурами мозга, объединенными в динамические системы, обеспечивающие приспособительный характер поведенческих реакций.

Принцип доминанты А. А. Ухтомского. А. А. Ухтомский, анализируя мозговые механизмы поведения сформулировал принцип доминанты. Согласно представлению А. А. Ухтомского, при осуществлении действия, обусловленного актуальными для данного момента сигналами или внутренними потребностями, возникает доминантный очаг возбуждения, создающий в мозгу динамическую констелляцию (объединение) нервных центров — функциональный рабочий орган. Констелляция нервных центров состоит из обширного числа пространственно разнесенных нервных элементов разных отделов ЦНС, временно объединенных для осуществления конкретной деятельности. Отдельные ее компоненты в разные моменты могут образовывать разные динамические констелляции, обеспечивающие выполнение определенных стоящих перед организмом целей и задач. А. А. Ухтомский обращал внимание на тот факт, что «нормальная деятельность мозга опирается не на раз и навсегда определенную статику различных фокусов как носителей отдельных функций, а на непрестанную межцентральную динамику нервных процессов на разных уровнях ЦНС». Тем самым подчеркивался не жесткий, а пластичный характер функциональных объединений, лежащих в основе интегративной деятельности мозга. Это определило понимание интегративной деятельности как результата системного динамического взаимодействия мозговых структур, обеспечивающего адаптивное реагирование и поведение индивида.

 

 

Рис. 57. Блок-схема функциональной системы П.К.Анохина

 

Концепция функциональной системы П. К. Анохина. Положения о системной организации деятельности мозга получили дальнейшее развитие в теории функциональных систем П. К. Анохина (рис. 57). Функциональная система представляет собой объединение элементов организма (рецепторов, нервных элементов различных структур мозга и исполнительных органов), упорядоченное взаимодействие которых направлено на достижение полезного результата, рассматриваемого как системообразующий фактор. Функциональная система формируется на основании целого ряда операций.

1. Афферентный синтез всей имеющейся информации, которая включает наличную афферентацию, следы прошлого опыта, мотивационный компонент. На основе синтеза всей этой информации обоснованно принимается решение и формируется программа действий.

2. Принятие решения с одновременным формированием программы действий и акцептора результатов действий — модели ожидаемого результата. Это означает, что до осуществления любого поведенческого акта в мозге уже имеется представление о нем; сходное представление об организации деятельности мозга было высказано Н.А. Бернштейном, считавшим, что всякому действию должно предшествовать создание «модели потребного будущего», т.е. того результата, на достижение которого направлена функциональная система.

3. Собственно действие, которое организуется за счет эфферентных сигналов из центральных структур к исполнительным органам, обеспечивающим достижение необходимой цели.

4. Сличение на основе обратной связи параметров совершенного действия с моделью — акцептором его результатов; обратная афферентация является необходимым фактором успешности каждого поведенческого акта и основой саморегуляции функциональной системы.

В состав функциональной системы включены элементы, принадлежащие как одной физиологической системе или органу, так и разным (пространственная разнесенность компонентов). Одни и те же элементы могут входить в состав разных функциональных систем. Стабильность состава компонентов функциональной системы и характер их взаимосвязи определяются видом реализуемой деятельности. Функциональные системы, обеспечивающие жизненно важные функции (дыхание, сосание), состоят из стабильных, жестко связанных компонентов. Системы, которые обеспечивают осуществление сложных поведенческих реакций и психических функций, включают в себя как жесткие, так и в значительно большей степени гибкие, пластичные связи, что создает высокую динамичность и вариативность их организации в зависимости от конкретных условий и задач.

 

Интегративные процессы и обработка информации в сенсорных системах

 

Сенсорные системы, или анализаторы. В обеспечении контактов организма с окружающим миром ведущая роль принадлежит сенсорным системам, осуществляющим прием и обработку внешних сигналов. На основе информационных процессов создается образ мира, складывается индивидуальный опыт, формируется познавательная деятельность. Представление о единой многоуровневой системе приема и анализа внешних сигналов впервые было сформулировано И. П. Павловым, создавшим учение об анализаторах. По И.П. Павлову, первичный анализ информации осуществляется тремя взаимосвязанными отделами: периферическим (рецепторный аппарат), проводниковым (проводящие пути от рецепторов и переключательные ядра таламуса) и центральным (проекционные области коры больших полушарий).

 

 

Рис. 58. Схема строения сетчатки

1 — пигментный слой; 2 — палочки; 3 — колбочки; 4 — биполярные нейроны; 5 — горизонтальные клетки; 6 — амакриновая клетка;

7 — ганглиозные клетки.

Пунктиром обозначено разделение сетчатки на слои

 

Рецепторы — специализированные образования, реагирующие на качественно различные виды (модальность) внешних сигналов: зрительный, слуховой, обонятельный, тактильный. Воспринимаемая рецепторами специфическая энергия (световые, звуковые волны) преобразуется в последовательность нервных импульсов, передающихся по специфической афферентной системе. Рецепторы различаются по строению, одни из них представлены сравнительно простыми клетками или нервными окончаниями, другие, например сетчатка глаза или кортиев орган уха, являются элементами сложноустроенных органов чувств.

Учитывая особую роль зрительной и слуховой сенсорных систем для человека и сложность их рецепторных структур, рассмотрим их строение, обеспечивающее восприятие сигналов соответствующей модальности.

 

 

 

 

Рис. 59. Звуковоспринимающий аппарат (кортиев орган)

 

Сетчатка (см. рис. 58) — многослойное образование. Она состоит из пигментного слоя, фоторецепторов и нескольких слоев нервных клеток. Фоторецепторы, воспринимающие световые волны, представлены двумя видами клеток: колбочками и палочками. Палочки обладают большей чувствительностью. Этот аппарат сумеречного зрения располагается на периферии сетчатки. В центре расположены колбочки, воспринимающие различные цвета, их чувствительность меньше и они функционируют только при ярком освещении. Нервные клетки осуществляют первичную обработку информации в сетчатке. Их аксоны образуют зрительный нерв, по которому информация передается в головной мозг. К моменту рождения сетчатка практически сформирована, колбочковый аппарат окончательно созревает в раннем постнатальном периоде, что касается зрительного нерва, то его миелинизация происходит в течение первых 3 мес., и это определяет значительное увеличение скорости передачи информации в мозг.

Звуковоспринимающий аппарат — кортиев орган расположен в улитке внутреннего уха (рис. 59). Его основная часть — покровная пластинка — состоит примерно из 24 тыс. тонких и упругих фиброзных волоконец. Вдоль основной пластинки в 5 рядов расположены опорные и волосковые клетки, воспринимающие звуковые волны. При распространении звуковых волн разные волосковые клетки реагируют на звуки разной высоты и интенсивности. Возникающие в этих клетках импульсы по слуховому нерву передаются в центральную нервную систему. Слуховая сенсорная система формируется очень рано и периферийный аппарат функционирует уже в пренатальном периоде.

Сенсорная информация из зрительного и слухового рецепторных аппаратов через релейные ядра таламуса поступает в проекционные отделы коры больших полушарий. Модально специфическая информация топически организована: от определенных участков рецепторного аппарата она поступает к определенным нейронам коры больших полушарий. Это так называемые рецептивные поля нейронов, способствующие пространственной организации сенсорных процессов.

Кодирование сенсорной информации. Информация о разных характеристиках стимула передается определенной последовательностью нервных импульсов — нервным кодом. Кодирование осуществляется числом и частотой импульсов в разряде, интервалами между разрядами, общей конфигурацией разряда. Как на основе нервного кода распознаются отдельные признаки, а затем складывается целостный образ? Наиболее убедительный ответ на вопрос о кодировании признаков дает точка зрения о наличии на разных уровнях сенсорной системы высокоспециализированных нервных клеток, избирательно реагирующих на определенный признак стимула — ориентацию, направление движения, интенсивность. Они получили название детекторов. Нейроны-детекторы, выделяющие из стимулов разные признаки (цвет, движение, ориентацию), расположены на разных уровнях ЦНС и в разных слоях коры. Нейроны, выделяющие сложные признаки, локализованы в верхних слоях коры и образуют объединения (нейронные ансамбли).

Для проекционных корковых зон наиболее характерны вертикально ориентированные нейронные ансамбли — колонки, впервые обнаруженные Маунткаслом в соматосенсорной коре. Одни колонки реагировали на прикосновение к поверхности тела, другие — на давление. Часть колонок реагировала на стимуляцию только одной половины тела. Колонки обнаруживаются и в других областях коры. По сложности обрабатываемой информации выделяют три типа колонок: микроколонки, макроколонки и гиперколонки, или модули (рис. 60).

Микроколонки реагируют лишь на определенную градацию какого-либо признака, например вертикальную или горизонтальную ориентацию; макроколонки, объединяя микроколонки, выделяют общий признак ориентации, реагируя на разные ее значения. Модуль выполняет обработку самых разных характеристик стимула (интенсивность стимула, цвет, ориентация, движение).

Иерархически организованная система связей от микроколонок к модулям обеспечивает возможность осуществляемого в проекционной коре тонкого дифференцированного анализа признаков разной сложности внутри одной сенсорной модальности.

Дальнейшая обработка сенсорно специфической информации осуществляется с участием так называемых гностических нейронов, получающих информацию об отдельных признаках от системы нейронов-детекторов. В гностических нейронах отдельные признаки интегрируются в целостный одномодальный (зрительный или слуховой) образ воспринимаемого объекта. Гностические нейроны, интегрирующие признаки одной сенсорной модальности, составляют 4—5 % нервных клеток в первичных проекционных зонах и широко представлены во вторичных полях.


Рис. 60. Схема модульной организации нейронов в коре больших полушарий. Слева обозначены слои коры

Нейронные сети как структурно-функциональная основа перцепции. В настоящее время широкое признание получило представление о значении нейронных сетей в информационных процессах. Согласно сетевому принципу, формирование нейронных сетей обеспечивает не только анализ поступающих сигналов, но и создает возможность существенно иной качественной обработки информации. Представление о сетевом принципе организации нервной переработки информации было выдвинуто Д.Хеббом, рассматривающем в качестве элементарной интегративной единицы нейронные ансамбли, которые могут расцениваться как локальные нервные сети. Помимо таких локальных сетей существуют и более сложные нейронные сети, которые объединяют различные области коры и обладают выраженными пластичными свойствами. В информационных процессах эти сети объединяют в единую систему проекционные и ассоциативные области коры и являются основой организации целостного процесса восприятия.

Возрастная динамика сенсорных процессов определяется постепенным созреванием различных звеньев анализатора. Рецепторные аппараты созревают еще в пренатальном периоде и к моменту рождения являются наиболее зрелыми. Значительные изменения претерпевают проводящая система и воспринимающий аппарат проекционной зоны, что приводит к изменению параметров реакции на внешний стимул. Следствием усложнения ансамблевой организации нейронов и совершенствования механизмов обработки информации, осуществляемой в проекционной корковой зоне, является усложнение возможностей анализа и обработки стимула, которое наблюдается уже в первые месяцы жизни ребенка. На этом же этапе развития происходит миелинизация афферентных путей. Это приводит к значительному сокращению времени поступления информации к корковым нейронам: латентный (скрытый) период реакции существенно сокращается. Дальнейшие изменения процесса переработки внешних сигналов связаны с формированием сложных нервных сетей, включающих различные корковые зоны и определяющих формирование процесса восприятия как психической функции.

 

Интегративные процессы в центральной нервной системе как основа психических функций

 

Системная организация процесса восприятия. Восприятие как психическая функция не ограничивается обработкой информации в сенсорно-специфическом анализаторе. Являясь активным процессом, восприятие включает ряд когнитивных операций — оценку стимула с точки зрения его значимости, опознание, классификацию и зависит от задачи, стоящей перед субъектом.

В системе восприятия особая роль принадлежит ассоциативным областям коры, которые осуществляют интеграцию признаков разной сенсорной модальности и на этой основе создают целостный образ внешнего мира. В рамках восприятия одной модальности они, благодаря связям с различными подкорковыми структурами и другими областями коры, участвуют в сличении наличной информации со следами в памяти, в оценке значимости в соответствии с ведущей потребностью, в опознании и классификации. Система двусторонних связей ассоциативных областей коры, в особенности лобных отделов, с лимбическими и ретикулярными регуляторными структурами определяет высокую пластичность процесса восприятия и его адекватность текущей ситуации.

Обработка информации в ассоциативных областях коры головного мозга. Нейронная организация ассоциативной коры характеризуется наличием сложных нейронных ансамблей и разветвленной системой межнейрональных связей.

В отличие от мономодальных нейронов проекционных корковых зон нейроны ассоциативных областей характеризуются полимодальными свойствами. На стимулы разных модальностей один и тот же нейрон реагирует определенным рисунком (паттерном) разряда, отражающим его специфические признаки. Показано, что эти нейроны получают сенсорно-специфическую информацию как из подкорковых отделов, так и из проекционных зон коры и имеют неспецифический вход от модулирующей системы мозга. Отличительной особенностью их реакций является их меньшая стабильность и однозначность по сравнению с ответами модальных нейронов проекционных зон. В ассоциативных областях выделяются нейроны с максимальной реакцией на первое воздействие стимула и нейроны с постепенным усилением ответа при повторном действии раздражителя.

В ассоциативной коре (нижневисочная зона) обнаружены также нейроны, избирательно реагирующие на сложные зрительные стимулы, становившиеся значимыми в процессе обучения. Обезьян обучали выбору стимула, идентичного эталону, из большого набора (97 стимулов). В ходе обучения при правильной реакции животного в ряде нейронов в ответ на появление значимого объекта возникали разряды определенной конфигурации, не регистрировавшиеся при предъявлении других стимулов. Таким образом, для нейронов ассоциативной коры характерны следующие особенности: 1) конвергенция стимулов, что необходимо для полного описания и опознания объекта; 2) высокая пластичность, обеспечивающая вовлечение их в реакции в зависимости от конкретных условий; 3) способность реагировать избирательно на сложные объекты, приобретающие определенную значимость.

Отражение системной организации процесса восприятия в структуре и топографии ВП (вызванный потенциал) и ССП (связанный с событиями потенциал). В развитии представлений о процессе восприятия как системе, в которой участвуют проекционные и ассоциативные области коры, большую роль сыграло изучение суммарных биоэлектрических реакций, возникающих в ответ на предъявление сенсорных стимулов, и при решении различных перцептивных задач — ВП и ССП. Вызванные ответы представляют собой последовательность позитивных и негативных колебаний, в которых различают начальные компоненты, непосредственно связанные с анализом и обработкой сенсорной информации (так называемые экзогенные компоненты) и более поздние колебания (эндогенные), отражающие процессы переработки информации разной, степени сложности в зависимости от стоящих перед испытуемым задач. Наиболее сложную структуру имеют ССП.

Более стабильными по своим параметрам являются начальные компоненты; поздние в силу зависимости от многих факторов (внимания, значимости, наличия следовых процессов) отличаются значительной вариабельностью. При использовании метода главных компонент и разностных кривых было показано, что в одном и том же временном интервале могут возникать несколько компонентов, имеющих различное функциональное значение и топографию в коре головного мозга.

Вызванный потенциал, возникающий в интервале до 200 мс, преимущественно выражен в каудальных отделах коры и имеет при осуществлении специфической зрительной функции наибольшую амплитуду в затылочной области.

При предъявлении сложных стимулов и оценке их значимости в составе ССП в интервале от 200 до 400 мс в различных корковых зонах в зависимости от характера стимула и условий его опознания (рис. 61) развиваются разные компоненты — негативная волна, больше выраженная в заднеассоциативных областях и отражающая анализ признаков стимула и его опознание, и позитивные компоненты, связанные с такими когнитивными операциями, как сличение со следом памяти, классификация стимула, принятие решения относительно предъявленной задачи.

Поздний позитивный комплекс преимущественно выражен в переднеассоциативных отделах коры. Показано, что в процессе классификации изображений по ведущему признаку поздний позитивный комплекс имеет максимальную амплитуду в левой лобной области, что указывает на ее специализированную роль в осуществлении этой операции.

Преимущественная выраженность определенных компонентов ССП в той или иной области коры отражает ее специализированное участие в отдельных операциях процесса восприятия. В то же время компоненты ССП с той или иной степенью выраженности могут быть одновременно зарегистрированы во всех корковых зонах. Этому соответствуют данные ПЭТ и ядерно-магнитно-резонансной томографии о широком вовлечении коры головного мозга в процесс восприятия.

Отдельные корковые зоны активно взаимодействуют друг с другом. В экспериментальных исследованиях выявлено взаимовлияние проекционных и ассоциативных отделов коры при осуществлении перцептивных операций.

Таким образом, современные данные подтверждают представление о восприятии как системном процессе, в котором специализированно участвуют и взаимодействуют различные области коры больших полушарий.

 

Рис. 61. ССП разных областей коры головного мозга при предъявлении предметных изображений. Пунктирная линия — ответ на засвет экрана, сплошная — на предметное изображение. Начало ответа совпадает с моментом предъявления стимула

 

Рис. 61. ССП разных областей коры головного мозга при предъявлении предметных изображений. Пунктирная линия — ответ на засвет экрана, сплошная — на предметное изображение. Начало ответа совпадает с моментом предъявления стимула

 

Возрастные особенности системной организации процесса восприятия. Гетерохронное созревание структур мозга, участвующих в реализации этой функции определяет очень существенные качественные преобразования ее мозговой организации в процессе индивидуального развития ребенка. С момента рождения ребенка функционируют проекционные отделы коры. В ответ на зрительные стимулы в этих отделах регистрируются локальные вызванные потенциалы, характеризующиеся относительно простой формой и длительным латентным периодом. Это свидетельствует о возможности осуществления элементарного сенсорного анализа уже в период новорожденное™. Однако, по образному определению И.М.Сеченова, новорожденный «видит, но видеть не умеет». Восприятие, создание образа предмета связано с функцией ассоциативных областей. По мере их созревания они начинают включаться в анализ и обработку поступающей информации. В раннем детском возрасте до 3—4 лет включительно заднеассоциативные зоны дублируют функцию проекционной коры. Их вызванные ответы по форме, временным параметрам, реактивности соответствуют ответам проекционной зоны.

Качественный скачок в формировании системы восприятия отмечен после 5 лет. К 6—7 годам заднеассоциативные зоны специализированно вовлекаются в процесс опознания сложных изображений, а в проекционной коре осуществляется более простой анализ, например выделение контура и контраста. На этом этапе развития существенно облегчается опознание сложных, ранее незнакомых предметов, сличение их с эталоном.

В школьном возрасте система зрительного восприятия продолжает усложняться и совершенствоваться за счет переднеассоциативных областей. Эти области, ответственные за принятие решения, оценку значимости поступающей информации и организацию адекватного реагирования, обеспечивают формирование произвольного избирательного восприятия. Существенные изменения избирательного реагирования с учетом значимости стимула отмечены к 10—11 годам. Недостаточная сформированость этого процесса в 7—8 лет обусловливает затруднение в выделении основной значимой информации и отвлечение на несущественные детали. Продолжительность созревания нейронного аппарата переднеассоциативных областей коры в онтогенезе определяет совершенствование процесса восприятия на протяжении всего восходящего периода развития, включая подростковый.








Дата добавления: 2017-11-04; просмотров: 171;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.02 сек.