Дисперсия случайной величины

 

Определение.Дисперсией (рассеиванием) дискретной случайной величины называется математическое ожидание квадрата отклонения случайной величины от ее математического ожидания:

.

Пример. Для рассмотренного выше примера находим.

Математическое ожидание случайной величины равно:

.

Возможные значения квадрата отклонения:

; ;

; ;

; .

Дисперсия равна:

.

Однако, на практике подобный способ вычисления дисперсии неудобен, т.к. приводит при большом количестве значений случайной величины к громоздким вычислениям. Поэтому применяется другой способ.

 

Вычисление дисперсии

 

Теорема. Дисперсия равна разности между математическим ожиданием квадрата случайной величины Х и квадратом ее математического ожидания:

.

Доказательство. С учетом того, что математическое ожидание и квадрат математического ожидания – величины постоянные, можно записать:

.

Применим эту формулу для рассмотренного выше примера:

 

X
X2
p 0,0778 0,2592 0,3456 0,2304 0,0768 0,0102

 

;

Свойства дисперсии

 

1) Дисперсия постоянной величины равна нулю:

.

2) Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат:

.

3) Дисперсия суммы двух независимых случайных величин равна сумме дисперсий этих величин:

.

4) Дисперсия разности двух независимых случайных величин равна сумме дисперсий этих величин:

.

Справедливость этого равенства вытекает из свойства 2.

Теорема. Дисперсия числа появления события А в п независимых испытаний, в каждом из которых вероятность появления события постоянна, равна произведению числа испытаний на вероятности появления и вероятность непоявления события в каждом испытании:

.

Пример. Завод выпускает 96% изделий первого сорта и 4% изделий второго сорта. Наугад выбирают 1000 изделий. Пусть Х – число изделий первого сорта в данной выборке. Найти закон распределения, математическое ожидание и дисперсию случайной величины.

Выбор каждого из 1000 изделий можно считать независимым испытанием, в котором вероятность появления изделия первого сорта одинакова и равна р = 0,96.

Таким образом, закон распределения может считаться биноминальным.

Пример. Найти дисперсию дискретной случайной величины Х – числа появлений события А в двух независимых испытаниях, если вероятности появления этого события в каждом испытании равны и известно, что

Т.к. случайная величина Х распределена по биноминальному закону, то

Пример. Производятся независимые испытания с одинаковой вероятностью появления события А в каждом испытании. Найти вероятность появления события А, если дисперсия числа появлений события в трех независимых испытаниях равна 0,63.

По формуле дисперсии биноминального закона получаем:

;

Пример. Испытывается устройство, состоящее из четырех независимо работающих приборов. Вероятности отказа каждого из приборов равны соответственно ; ; . Найти математическое ожидание и дисперсию числа отказавших приборов.

Принимая за случайную величину число отказавших приборов, видим что эта случайная величина может принимать значения 0, 1, 2, 3 или 4.

Для составления закона распределения этой случайной величины необходимо определить соответствующие вероятности. Примем .

1) Не отказал ни один прибор:

2) Отказал один из приборов:

0,302.

3) Отказали два прибора:

4) Отказали три прибора:

5) Отказали все приборы:

Получаем закон распределения:

 

0,084 0,302 0,38 0,198 0,036

 

Математическое ожидание:

Дисперсия:

Определение.Средним квадратическим отклонениемслучайной величины Х называется квадратный корень из дисперсии:

.

Теорема. Среднее квадратичное отклонение суммы конечного числа взаимно независимых случайных величин равно квадратному корню из суммы квадратов средних квадратических отклонений этих величин:

.








Дата добавления: 2017-09-19; просмотров: 971;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.012 сек.