Самоорганизация материи

 

Идея самоорганизации материи утвердилась в научном мировоззрении во второй половине ХХ века в связи с заменой стационарной модели Вселенной развивающейся моделью. Стационарная модель Вселенной считала господствующей тенденцию материи к разрушению случайно возникшей упорядоченности и возвращению ее к исходному хаосу. Прежние представления базировались на основе статистической механики и равновесной термодинамики, которые описывают поведение изолированных систем, не обменивающихся ни веществом, ни энергией с окружающей средой. Вселенная тоже рассматривалась как замкнутая система.

Сегодня наука считает все известные системы, от самых малых, до самых больших, открытыми, т. е. обменивающимися веществом, энергией, информацией и находящимися в термодинамически неравновесном состоянии. На этой основе возникло представление о самоорганизации материи.

Самоорганизация - это природные скачкообразные процессы, переводящие открытую неравновесную систему, достигшую критического состояния в своем развитии, в новое устойчивое состояние с более высоким уровнем сложности и упорядоченности по сравнению с исходным.

Критическое состояние - это состояние крайней неустойчивости, достигаемое открытой неравновесной системой в ходе предшествующего периода плавного эволюционного развития.

Сложные объекты обладают новыми качествами, которых лишены исходные простые элементы, составляющие их. Процесс объединения простых элементов в более сложные системы протекает лишь при определенных условиях, при которых наступает критический момент. Существуют пороговые значения управляющих параметров (температура, плотность, давление и т. д.), называемые критическими значениями, которые отделяют область возможного образования от области, где этот процесс невозможен.

Наиболее высоким уровнем упорядоченности обладает жизнь и порожденный ею разум. Тем не менее, сравнительно недавно установлено, что самоорганизация присуща неживой природе в той же мере, что и живой. Все самоорганизующиеся системы различных уровней имеют единый алгоритм перехода от менее сложных и менее упорядоченных к более сложным и более упорядоченным системам. Разработка теории самоорганизации началась в последние годы по нескольким направлениям:

· · синергетика (Г. Хакен);

· · термодинамика неравновесных процессов (И. Пригожин);

· · теория катастроф (Р. Том).

Синергетика - наука о самоорганизации простых систем, о превращении хаоса в порядок. Возникшие сложные упорядоченные системы попадают под действие конкуренции и отбора. Как утверждает Хакен, это приводит в определенном смысле к обобщенному дарвинизму, действие которого распространяется не только на органический, но и на неорганический мир.

Объект изучения синергетики, независимо от его природы, должен удовлетворять следующим требованиям:

1. 1. система должна быть открытой, т. е. обмениваться веществом и энергией с окружающей средой;

2. 2. система должна быть достаточно далеко от точки термодинамического равновесия, т. е. в состоянии, близком к потере устойчивости;

3. 3. обладать достаточным количеством элементов, взаимодействующих между собой;

4. 4. иметь положительную обратную связь, при котором изменения, появляющиеся в системе, не устраняются, а накапливаются и усиливаются, что приводит к возникновению нового порядка и структуры;

5. 5. сопровождаться нарушением симметрии, т. к. изменения приводят к разрушению старых и образованию новых структур;

6. 6. скачкообразно выходить из критического состояния при переходе на более высокий уровень упорядоченности. Скачок - это крайне нелинейный процесс, при котором малые изменения параметров системы вызывают очень сильные изменения ее состояния и переход в новое качество.

 

Примеры синергетики существуют во всех естественных науках:

· · лазер, создающий высокоорганизованное оптическое излучение;

· · эффект Бенара - при нагревании силиконового масла на его поверхности возникает динамическая упорядоченная структура, напоминающая кристалл в виде сеточки с ячейками гексагональной формы.

· · реакция Белоусова-Жаботинского - это автоколебательные процессы при окислении-восстановлении солей церия: Се3+ « Се4+. На стадии окисления жидкость становится красной, при восстановлении - синей. Окраска раствора постоянно периодически изменяется.

· · в биологии к числу синергетических явлений относятся мышечные сокращения, электрические колебания в коре головного мозга и т. д.

 

Неравновесная термодинамика И. Пригожина рассматривает неравновесность открытых систем как причину порядка. Чтобы система могла не только поддерживать, но и создавать порядок из хаоса, она обязательно должна быть открытой и иметь приток вещества и энергии извне. Такие системы И. Пригожин назвал диссипативными. Весь мир, доступный человеку, состоит именно из таких систем. Поэтому в окружающем мире повсюду обнаруживается эволюция, разнообразие форм, неустойчивость.

В ходе эволюционного этапа развития диссипативная система теряет устойчивость и приходит в состояние сильной неравновесности. Это происходит при критических значениях управляющих параметров.

Разрешением кризисной ситуации является быстрый переход диссипативной системы в одно из возможных устойчивых состояний, качественно отличающихся от исходного. Это и есть акт самоорганизации системы. В состоянии перехода из одного состояния в другое, элементы системы ведут себя взаимосвязано, хотя до этого пребывали в хаотическом движении.

Переход диссипативной системы из критического состояния в устойчивое неоднозначен. Сложные неравновесные системы имеют возможность перейти из неустойчивого в одно из нескольких устойчивых состояний. Выбор системой варианта устойчивого состояния носит случайный характер. Этот переход носит скачкообразный, одноразовый и необратимый характер. Критическое значение параметров системы, при которых возможен неоднозначный переход в новое состояние, называется точкой бифуркации.

Таким образом, самоорганизация позволяет по-новому взглянуть на соотношение случайного и закономерного в развитии систем и природы в целом. В их развитии выделяются две фазы:

1) 1) плавная эволюция, ход которой закономерен и предопределен;

2) 2) скачки в точках бифуркации, протекающие случайно и поэтому случайно определяющие последующий эволюционный этап до новой критической точки.

 

Самоорганизация не подчиняется статистическим законам, время в ней носит необратимый характер, позволяя говорить о «стреле времени» - невозможности поворота скачка вспять.

Проблемами самоорганизации также занимается теория катастроф. Катастрофы - это скачкообразные изменения, возникающие в виде внезапного ответа системы на плавное изменение внешних условий. Эта теория исследует все скачкообразные переходы, разрывы, внезапные качественные изменения.

 

 








Дата добавления: 2017-02-20; просмотров: 969;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.009 сек.