Z – ТРАНСФОРМАЦИЯ сигналов [4, 12, 22].
ЦИФРОВАЯ ОБРАБОТКА СИГНАЛОВ
Цифровая обработка сигналов оперирует с дискретными представлениями сигналов. Математика дискретных преобразований зародилась в недрах аналоговой математики еще в 18 веке в рамках теории рядов и их применения для аппроксимации функций, однако ускоренное развитие она получила в 20 веке после появления первых вычислительных машин. В принципе, в своих основных положениях математический аппарат дискретных преобразований подобен преобразованиям аналоговых сигналов и систем. Однако дискретность данных требует учета этого фактора, а его игнорирование может приводить к существенным ошибкам. Кроме того, ряд методов дискретной математики не имеет аналогов в аналитической математике.
Распространенным способом анализа дискретных цифровых последовательностей является z-преобразование (z-transform). Оно играет для дискретных сигналов и систем такую же роль, как для аналоговых – преобразование Лапласа. Большое значение z-преобразование имеет для расчетов рекурсивных цифровых систем обработки сигналов, а потому рассматривается отдельной темой перед началом изучения рекурсивных цифровых фильтров.
Z – ТРАНСФОРМАЦИЯ сигналов [4, 12, 22].
Определение z-преобразования. Z-преобразование представляет собой разложение функций в ряды степенных полиномов по z. Впервые z-преобразование введено в употребление П.Лапласом в 1779 и повторно "открыто" В.Гуревичем в 1947 году с изменением символики на z-k. В настоящее время в технической литературе имеют место оба вида символики. На практическое использование преобразования это не влияет, т.к. смена знака только зеркально изменяет нумерацию членов полинома (относительно z0), числовое пространство которых в общем случае от -¥ до +¥. В дальнейшем в качестве основной будем использовать символику положительных степеней z, давая пояснения по особенностям отрицательной символики, если таковая имеется.
Произвольной непрерывной функции s(t), равномерно дискретизированной и отображенной отсчетами sk = s(kDt), равно как и непосредственно дискретной функции, можно поставить в однозначное соответствие степенной полином по z, последовательными коэффициентами которого являются значения sk:
sk = s(kDt) Û TZ[s(kDt)] = sk zk = S(z). (8.1.1)
где z = s+jw - произвольная комплексная переменная. В показательной форме z = r×exp(-jj), где r = |z| = , j = arg(z) =argtg(w/s).
Пример 1:sk = {1, 2, 0, -1, -2, -1, 0, 0}.
S(z) = 1z0+2z1+0z2-1z3-2z4-1z5+0z6+0z7 = 1+2z-z3-2z4-z5.
В каузальных системах значения импульсного отклика систем существуют при k ≥ 0 и уравнение (8.1.1) действует в одностороннем варианте:
H(z) = hk zk.
В общем случае, z-преобразование – это степенной ряд с бесконечным количеством членов, поэтому он может сходиться не для всего пространства значений z. Область z, в которой z-преобразование сходится и значения S(z) конечны, называют областью сходимости.
Пример 2:Последовательность (сигнал) конечной длины, непричинная: s-k = {1, 2, 3, 2, 1}, k = 0, 1, 2, 3, 4.
S(z) = 1z0+2z-1+3z-2+2z-3+1z-4 = 1+2/z+3/z2+2/z3+1/z4.
Очевидно, что S(z) = ∞ при z = 0. Область сходимости – все значения z, за исключением z = 0.
Пример 3:Последовательность конечной длины, причинная (как импульсный отклик каузальной системы): sk = {1, 2, 3, 2, 1}, k = 0, 1, 2, 3, 4.
S(z) = 1+2z+3z2+2z3+z4.
S(z) = ∞ при z = ∞. Область сходимости – все значения z, за исключением z = ∞.
Пример 4:Последовательность конечной длины, двусторонняя (как импульсный отклик симметричного фильтра): sk = {1, 2, 3, 2, 1}, k = -2, -1, 0, 1, 2.
S(z) = 1z-2+2z-1+3z0+2z1+1z2 = 1/z2+2/z+3+2z+z2.
S(z) = ∞ при z = 0 и z = ∞. Область сходимости не включает точки z = 0 и z = ∞.
Пример 5:Последовательность бесконечной длины, причинная (как импульсный отклик рекурсивного интегрирующего фильтра): sk = 0 при k < 0, s = 1 при k ≥ 0.
S(z) = z-0+z1+z2+z3+ … = 1+z+z2+z3+ … = 1/(1-z)
Ряд удовлетворяет условию сходимости только при |z| < 1.
Значения z, для которых S(z) = ∞, называются полюсами, а для которых S(z) = 0, называются нулями функции S(z). Как видно из примеров, для последовательностей конечной длины z-преобразование сходится везде кроме точки z=∞ для имеющих правостороннюю часть (k≥0), и точки z=0 для имеющих левостороннюю часть (k<0), в любых их комбинациях. Для бесконечных причинных последовательностей преобразование сходится везде внутри круга единичного радиуса с центром в начале координат.
По заданному или полученному в результате анализа какой-либо системы z-полиному однозначно восстанавливается соответствующая этому полиному функция путем идентификации коэффициентов степеней при zk с k-отсчетами функции.
Пример 6:S(z) = 1+3z2+8z3-4z6-2z7 = 1z0+0z1+3z2+8z3+0z4+0z5-0z6-2z7.
sk = {1, 0, 3, 8, 0, 0, -4, -2}.
Смысл величины z в z-полиноме заключается в том, что она является оператором единичной задержки по координатам функции. Умножение z-образа сигнала s(k) на величину zn означает задержку сигнала (сдвиг вправо по временной оси) на n интервалов: znS(z) Û s(k-n). Чтобы убедиться в этом, достаточно в приведенном выше примере выполнить умножение многочлена S(z), например на z2, выполнить обратное преобразование и получить новый сигнал sk = {0, 0, 1, 0, 3, 8, 0, 0, -4, -2}.
Z-образы с положительными степенями z соответствуют каузальным (физически реализуемым) процессам и системам, которые работают в реальном масштабе времени с текущими и "прошлыми" значениями сигналов. При обработке информации на ЭВМ каузальность сигналов не относится к числу ограничений и возможно использование отрицательных степеней z, соответствующих отсчетам сигналов "вперед". Последнее применяется, например, при синтезе симметричных операторов фильтров, что позволяет производить обработку информации без внесения в сигнал фазовых искажений. При использовании символики z-1 "прошлым" значениям соответствуют значения с отрицательными степенями z, "будущим" – с положительными.
Основное достоинство z-преобразований заключается в простоте математических операций со степенными полиномами, что имеет немаловажное значение при расчетах цифровых фильтров и в спектральном анализе.
Связь с преобразованиями Фурье и Лапласа. Запишем дискретный сигнал sk в виде суммы весовых импульсов Кронекера:
sk = s(kDt) = s(nDt) d(kDt-nDt).
Определим спектр сигнала по теореме запаздывания:
S(w) = s(kDt) exp(-jwkDt).
Выполним замену переменных, z = exp(-jwDt), и получим:
S(w) = s(kDt)×zk = S(z).
Отсюда следует, что дискретное преобразование Фурье является частным случаем z-преобразования при z = exp(-jwDt).
Аналогичной подстановкой z = exp(-p) может осуществляться переход к дискретному преобразованию Лапласа. В общем виде:
S(w) = S(z), z = exp(-jwDt); S(p) = S(z), z = exp(-pDt). (8.1.2)
Обратное преобразование:
S(z) = S(w), w = ln z / jDt; S(z) = S(p), p = ln z/Dt. (8.1.3)
При отрицательной символике z связь между представлениями осуществляется соответственно подстановками z-1 = exp(jwDt) и z-1 = exp(p).
При zk = exp(-jwkDt) z-преобразование представляет собой особую форму представления дискретных сигналов, при которой на полином S(z) можно ссылаться как на временную функцию (по значениям коэффициентов kDt), так и на функцию частотного спектра сигнала (по значениям аргумента w).
Отображение z-преобразования выполняют на комплексной z-плоскости с Re z и Im z по осям координат (рис. 8.1.1). В частности, спектральной оси частот w на z-плоскости соответствует окружность радиуса:
|z| = |exp(-jwDt)| = = 1.
Рис. 8.1.1. Комплексная z-плоскость |
Подстановка значения какой-либо частоты w в z = exp(-jwDt) отображается точкой на окружности. Частоте w = 0 соответствует точка Re z = 1 и Im z = 0 на правой стороне оси абсцисс. При повышении частоты точка смещается по окружности против часовой стрелки, и занимает крайнее левое положение на частоте Найквиста wN = p/Dt (Re z = -1, Im z = 0). Отрицательные частоты спектра отображаются аналогично по часовой стрелке на нижней полуокружности. Точки wN совпадают, а при дальнейшем повышении или понижении частоты значения начинают повторяться в полном соответствии с периодичностью спектра дискретной функции. Проход по полной окружности соответствует одному периоду спектра, а любая гармоника спектра сигнала задается на плоскости двумя точками, симметричными относительно оси абсцисс.
Сигналы и системы непрерывного времени очень часто описываются с помощью преобразования Лапласа. Если z=exp(-sDt), где s=s + jw, то
z = exp(-(s + jw)Dt) = exp(-sDt) exp(-jwDt).
Следовательно, |z| = exp(-sDt), arg(z) = wDt = 2pfDt = 2pf/fD, где fD - частота дискретизации, при этом ось w отображается на z-плоскости единичной окружностью, правая сторона s-плоскости отображается внутрь окружности, а левая сторона – на внешнюю сторону окружности. При использовании символики z-1 отображение сторон s-плоскости на z-плоскости меняется местами.
Дата добавления: 2017-08-01; просмотров: 1011;