ХИМИЧЕСКОЕ РАВНОВЕСИЕ. КОНСТАНТА ХИМИЧЕСКОГО РАВНОВЕСИЯ

Пример 1. Вычислить изменение энергии Гиббса ΔG в реакции димеризации диоксида азота 2NО2(г)= N2O4(г) при стандартной температуре 298 К, 273 К и 373 К. Сделать вывод о направлении процесса. Определить константы равновесия реакции димеризации диоксида азота при выше указанных температурах. Определить температуру, при которой Δ G = 0. Сделайте вывод о направлении этой реакции выше и ниже этой температуры. Термодинамические характеристики компонентов:

 

ΔΗ°298 So298

В-во кДж/моль Дж/моль*K

NO2 (г) 33,3 240,2

N2O4(г) 9,6 303,8

 

Решение. Для обратимого процесса:

aA(г) + bB(г) ⇄ сС(г) + dD(г)

выражение для константы равновесия Kр будет
Kр =(PcC*PdD)/(PaA*PbB)

где PA, PB, PC, PD - равновесные парциальные давления газообразных компонентов А,В,С,D a, b, c, d - стехиометрические коэффициенты.

Для процесса aA(ж)+bB) ⇄ сC(ж)+dD(ж) выражение для константы равновесия
Kc = (CcC*CdD)/(CaA*CbB)

где CA, CB, CC, CD - равновесные концентрации веществ А,В,С,D a, b, c, d - стехиометрические коэффициенты.

По формуле (1.4.1) для системы 2NO2⇄ N2O4 имеем

Kр =PN2O4/P2NO2
При стандартной температуре 298 K изменение энтальпии ( ΔHo реакции) определим по формуле (1.2.2)

ΔHo реакции = ΔΗ°298 N2O4 - 2ΔΗ°298 NO2 = 9,6-2*33,5 = -57400 Дж.

Изменение энтропии (1.3.5)

ΔSo реакции = S°298 N2O4 - 2S°298 NO2 =303,8-2* ( 240 ,2 )=-176 Дж/моль*К

Пользуясь принципом Ле-Шателье, который говорит о том, что при изменении условий, при которых обратимая реакция находится в состоянии равновесия, равновесие сместится в сторонy процесса ослабевающего изменения, предскажем направление смещения равновесия. Значение ΔΗо отрицательно, следовательно реакция образования экзотермическая (идет c выделением тепла) и при понижении температуры равновесие должно смещаться вправо, при повышении температуры - влево. Кроме того, по фopмyлe (1.3.6), зная, что ΔH<O; ΔS < 0 мы можем сделать заключение о том, что Δ G < 0 будет при низких температypax; Δ G < 0 характеризует возможность самопроизвольного процесса; Δ G > 0 характеризует невозможность самопроизвольного процесса (см. пример 4 разд. 1.3). Следовательно, в нашем случае при понижении температуры будет предпочтительнее образование N2О4 (равновесие смещается вправо), а при увеличении температуры предпочтительнее образование NO2 (равновесие смещается влево). Качественные выводы подтвердим расчетами

ΔGo273; ΔGo298 ; ΔGo373 и K273; K298 ; K373

Значение энергии Гиббса для заданных температур рассчитаем по формуле (1.3.7):

ΔGo298=ΔHo-TΔSo=-57400-298*(-176)=-4952Дж.,

ΔGo273=-57400-273*(-176)=-9352Дж:

ΔGo373=-57400-373*(-176)= 7129 Дж.

Отрицательное значение ΔGo298 говорит о смещении равновесия реакции вправо, а более высокое отрицательное значение ΔGo273 свидетельствует о том, что при снижении температуры от (298 до 273 К) равновесие смещается вправо.

Положительное значение ΔGo373 указывает на изменение направления самопроизвольного процесса. При этой температуре предпочтительнее становится обратная реакция (смещение равновесия влево).

Константы равновесия Кp и энергию Гиббса ΔGo связывает формула

ΔGo=-RTlnKp

где Кp — константа равновесия процесса; R - газовая постоянная; T - абсолютная температура. По формуле (1.4.3) имеем:

lnK273=- ΔGo273/RT=9352/8,31*273=4,12

K273= 61

lnK298= -ΔGo298/RT=4952/8,31*298=2

K298=7,3

lnK373= -ΔGo373/RT=-7129/8,31*298=-2,3

K373=0,1

значение К298 и K273 > 1 показывает на смещение равновесия вправо (сравни с (1.4.1)) и тем больше, чем выше значение константы равновесия. K373 < 1, говорит ο смещении равновесия в системе влево (сравни с (1.4.1)).

Условию ΔGoреакции =0 отвечает константа равновесия,

реакции

равная единице.

Рассчитаем температуру Т , соответствующую этой константе по формуле (1.3.7):

ΔG°=ΔΗ°-TΔSo ; O=ΔHo-TΔSo;

TΔG=0 =ΔΗ°/ΔS°=57400/176=326,19 K

Вывод. При температуре 326,19 K прямая и обратная реакции протекают c одинаковой вероятностью, Kр=1. С понижением температуры равновесие будет смещаться вправо с повышением влево.

Пример 2. Константа равновесия Кр реакции синтеза NH3 по реакции N2+3H2==2NH3 при 623 K равна 2,32*10-13. Вычислить Кс при той же температуре.

Решение. Связь Кр и Кс осуществляется по формуле

K p= Kc (RT)Δn, (1.4.4)

Δn= n2- n1 =2-4= -2, где n1и n2 количество молей peaгентов и продуктов. Следовательно,

Kc=Kp/(RT)Δn=0,624*10-5

Ответ. К = 0,624*10-5.

Пример 2. Упругость диссоциации карбоната кальция при 1154 К равна 80380 Па, а при 1164 K - 91177 Па. Рассчитать, при какой температуре упругость диссоциации карбоната кальция будет равна 101325 Па.

Решение. Реакция диссоциации CaCO3(кр) ⇄ CaO(кр)+СО2(г)

Отсюда по (1.4.1)

Kp=PCO2
Следовательно, при каждой температуре (Т1 - 1154 K; Τ =1164 К* Τ = X) константы равновесия будут соответствовать давлению:

KT1 = 80380; KT2 = 91177; K T3 = 101325.

Зависимость константы равновесия от температуры показы­вает уравнение Аррениуса

dlnKp/dT= ΔΗ/RT2 (1.4.5)

где Кp - константа равновесия; Τ - температура, К; ΔΗ - теп­ловой эффект реакции; R - газовая постоянная.

Интегрируя уравнение (1.4.5) в интервале температур Т12 при Δ H= соnst получим
lnKT1/KT2= ΔΗ/R(1/T1-1/T2),

Где KT1 и KT2 – константы равновесия при T1 и T2.

Определим сначала ΔΗ (по 1.4.6)

ΔΗ=ln(91177*8,31*1154*1164/80380*10)=140500 Дж/моль.

Далее определяем T3

ln(101325/91177)=140500/8,31(1/1164-1/T3)

T3=1172 K
Ответ. При Т=1172К упругость диссоциации карбоната кальция будет равна 101325 Па.

 

Задачи

56. Константа диссоциации уксусной кислоты при 298 К равна 1,75*10-5. Чему равно изменение энергии Гиббса диссо­циации уксусной кислоты?

57. Найти значение энергии Гиббса (ΔGo298) и константы равновесия K298 для реакции BaSО4(кр) → Ba2+(р) + SО2-4(p).

Для расчета использовать следующие данные:

Вещество Sо298 Дж/моль*К ΔHo 298кДж/моль 2^ 2^

BaSO4(кр) 132,4 -1447,39

Ba2+(р) 9,64 -533,83

SO2-4 (р) 18,44 -904,2.

 

58. Найти константу равновесия при 473 К для реакции гидратации этилена

С2Н4(г) + H2O(г)2Н5ОН(г).
Свойства реагентов взять в табл. 3. Зависимостью ΔS и ΔH от температуры пренебречь.

59. Считая, что ΔHo 298 и ΔSо298реакции 4HCl+O2 ⇄ 2Н2О + 2Сl2 не зависят от температуры, найти температуру, при которой

Кр =1, а ΔGo= О.

60. Пользуясь табличными данными, вычислить константы равновесия следующих реакций при 298 К и при 1000 К:

а) Н2О(г) + СО ⇄ СО2 + Н2

б) СО2 + С(гр) ⇄ 2СО;

c) N2 + 3H2 ⇄ 2NH3.
Изменениями ΔHoи Sоот температуры пренебречь.

61. Для некоторой самопроизвольно протекающей реакции Δ S < О. Как будет изменяться константа равновесия с повышением температуры: а) увеличиваться, б) уменьшаться, в) по данным задачи нельзя определить.

62. Не пользуясь вычислениями, установить знак ΔSo сле­дующих процессов:

а) 2NH3(г) ⇄ N2(г) + H2(г) ;

б) CO2(кр) ⇄ CO2(г);

в) 2NO(г) + O2(г) = 2NO2(г);

г) 2Н2S(г) + 3O2 = 2H2O(ж) + 2SO2(г);

д) 2СН3ОН(г) + 3О2(г) = 4H2O(г) + 2СО2(г).

63. В каком из следующих случаев реакция возможна при любых температурах: а) ΔН°< 0, ΔS°> 0; б) Δ Н°<0, ΔS°<0; в) Δ Н°>0, ΔS°> 0 ?

64. В каком из следующих случаев реакция неосуществима при любых температурах: а) ΔН°> 0, ΔS°> 0; б) Δ Н°>0, ΔS°<0; в) Δ Н°<0, ΔS°<0 ?

65. Если ΔΗ°<0 и ΔS°<0 , в каком из случаев реакция может протекать самопроизвольно:
а)| ΔН°| > |TΔS°|; б)| ΔН°| > |TΔS°| ?

66. Какими воздействиями на систему можно сместить равновесие систем:

а) N2(г) + 3Н2(г) ⇄ 2NH3(г) ;

б) 4Fe(кр) + 3О2(г) ⇄ 2Fe2O3(кр);

в) SO2(г) + О2(г) ⇄ 2SO3(г).

67. В каком направлении произойдет смещение равновесия при повышении температуры в системах:

1) СОCl2 ⇄ CO +Cl2; ΔН°=113 кДж;

2) 2СО ⇄ СО2 + С; ΔН°=-171 кДж;

3) 2SO3 ⇄ 2SO2 + O2; ΔН°=192 кДж.

68. В каком направлении сместится равновесие при повыше­нии давления в системах:

1) Н2(г) + S(кр) ⇄ Н2S(г) ;

2) 2CO(г) ⇄ СО2(г) + С(гр);

3) 4HCl(г) 2(г) ⇄ 2Н2О(г) + 2Cl2(г).

69. Как повлияет на равновесие следующих реакций:

СаСО3(кр) ⇄ СаО(кр) + СО2(г); ΔН°=178 кДж;

2СО(г) + О2(г) ⇄ 2СО2 ; ΔН°=-566 кДж;

N2(г) + О2(г) ⇄ 2NO(г) ; ΔН°=180 кДж.

а) повышение температуры,

б) повышение давления?

70. Используя справочные данные, найти приближенное зна­чение температуры, при которой константа равновесия реакции образования водяного газа

С(гр) + Н2О(г) ⇄ СО(г) + Н2(г)
равна 1. Зависимостью ΔHoи Sоот температуры пренебречь.

71. Константа равновесия Кр реакции СО+Сl2 ⇄ СОCl2 при 600о С равна 1,67*10-6. Вычислять Кс реакции при данной температуре.

72. Упругость диссоциации карбоната магния при 1000 К равна 42189 Па, а при 1020 К - 80313 Па. Определить тепловой эффект реакции MgCО3 ⇄ МgО+СO2 и температуру, при ко­торой упругость диссоциации карбоната магния станет равной 1 Па.

73. Для реакции S02+1/2О2⇄SO3 константа равновесия Кр при 900 К равна 2,058·10-2. Вычислить Кс для данной реакции при указанной температуре.

74. Определить константу равновесия KT2 при T2=1069 K для реакции 2СО ⇄ С + О2 , если при T1 = 1000 K KT1=8,1*10-8, а ΔH=-109,5 кДж/моль.

75. Для реакции CO(г) + H2O(г) ⇄ СО2(г) + Н2(г) определить Кр при 398 К, если при 298 К константа равновесия этой реакции равна 1*105. Для температуры 298 К рассчитайте изменение энергии Гиббса (ΔG°).








Дата добавления: 2017-08-01; просмотров: 14545;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.023 сек.