Мышечная система и ее функции.
Существует два вида мускулатуры: гладкая (непроизвольная) и поперечно-полосатая (произвольная). Гладкие мышцы расположены в стенках кровеносных сосудов и некоторых внутренних органах. Они сужают или расширяют сосуды, продвигают пищу по желудочно-кишечному тракту, сокращают стенки мочевого пузыря. Поперечно-полосатые мышцы – это все скелетные мышцы, которые обеспечивают многообразные движения тела. К поперечно-полосатым мышцам относится также и сердечная мышца, автоматически обеспечивающая ритмическую работу сердца на протяжении всей жизни. Основа мышц – белки, составляющие 80–85% мышечной ткани (исключая воду). Главное свойство мышечной ткани – сократимость, она обеспечивается благодаря сократительным мышечным белкам – актину и миозину.
Мышечная ткань устроена очень сложно. Мышца имеет волокнистую структуру, каждое волокно – это мышца в миниатюре, совокупность этих волокон и образуют мышцу в целом. Мышечное волокно, в свою очередь, состоит из миофибрилл. Каждая миофибрилла разделена на чередующиеся светлые и темные участки. Темные участки – протофибриллы состоят из длинных цепочек молекул миозина, светлые образованы более тонкими белковыми нитями актина. Когда мышца находится в несокращенном (расслабленном) состоянии, нити актина и миозина лишь частично продвинуты относительно друг друга, причем каждой
нити миозина противостоят, окружая ее, несколько нитей актина. Более глубокое продвижение относительно друг друга обусловливает укорочение (сокращение) миофибрилл отдельных мышечных волокон и всей мышцы в целом (рис. 3.).
Рис. 3. Схематическое изображение мышцы
1 – изотропный диск, 2 – анизотропный диск, 3 – участок с меньшей анизотропностью. Поперечный срез миофибриллы (4), лающий представление о гексагональном распределении толстых и тонких миофиламентов
Мышца (А) состоит из мышечных волокон (Б), каждое из них – из миофибрилл (В). Миофибрилла (Г) составлена из толстых и тонких миофила-ментов (Д). На рисунке показан один саркомер, ограниченный с двух сторон линиями:
К мышце подходят и от нее отходят (принцип рефлекторной дуги) многочисленные нервные волокна (рис. 4). Двигательные (эфферентные) нервные волокна передают импульсы от головного и спинного мозга, приводящие мышцы в рабочее состояние; чувствительные волокна передают импульсы в обратном направлении информируя центральную нервную систему о деятельности
Рис. 4. Схема простейшей рефлекторной дуги:
1 – афферентный (чувствительный) нейрон, 2 – спинномозговой узел, 3 – вставочный нейрон, 4 – серое вещество спинного мозга, 5 – эфферентный (двигательный) нейрон, 6 – двигательное нервное окончание в мышцах; 7 – чувствительное нервное окончание в коже.
Через симпатические нервные волокна осуществляется регуляция обменных процессов в мышцах, посредством чего их деятельность приспосабливается к изменившимся условиям работы, и к различным мышечным нагрузкам. Каждую мышцу пронизывает разветвленная сеть капилляров, по которым поступают необходимые для жизнедеятельности мышц вещества и выводятся продукты обмена.
Скелетная мускулатура. Скелетные мышцы входят в структуру опорно-двигательного аппарата, крепятся к костям скелета и при сокращении приводят в движение отдельные звенья скелета, рычаги. Они участвуют в удержании положения тела и его частей пространстве, обеспечивает движения при ходьбе, беге, жевании, глотании, дыхании и т.д., вырабатывая при этом тепло. Скелетные мышцы обладают способностью возбуждаться под влиянием нервных импульсов. Возбуждение проводится до сократительных структур (миофибрилл), которые, сокращаясь, выполняют определенный двигательный акт – движение или напряжение.
Напомним, что вся скелетная мускулатура состоит из поперечно-полосатых мышц. У человека их насчитывается около 600 и большинство из них – парные. Их масса составляет 35-40% общей массы тела взрослого человека. Скелетные мышцы снаружи покрыты плотной соединительнотканной оболочкой. В каждой мышце различают активную часть (тело мышцы) и пассивную (сухожилие). Мышцы делятся на длинные, короткие и широкие.
Мышцы, действие которых направлено противоположно, называются антагонистами, однонаправленно – синергистами. Одни и те же мышцы в различных ситуациях могут выступать в том и другом качестве. У человека чаще встречаются веретенообразные и лентовидные. Веретенообразные мышцы расположены и функционируют в районе длинных костных образований конечностей, могут иметь два брюшка (двубрюшные мышцы) и несколько головок (двуглавые, трехглавые, четырехглавые мышцы). Лентовидные мышцы имеют различную ширину и обычно участвуют в корсетном образовании стенок туловища. Мышцы с перистым строением, обладая большим физиологическим поперечником за счет большого количества коротких мышечных структур, значительно сильнее тех мышц, ход волокон в которых имеет прямолинейное (продольное) расположение. Первые называют сильными мышцами, осуществляющими малоамплитудные движения, вторые – ловкими, участвующими в движениях с большой амплитудой. По функциональному назначению и направлению движений в суставах различают мышцы сгибатели и разгибатели, приводящие и отводящие, сфинктеры (сжимающие) и расширители
Рис. 3. Форма мыши:
1 – веретснообразная; 2 — одноперистая; 3 — двуперистая; 4 — двуглавая; 5 – лентовидная; 6 — двубрюшная; 7— сжиматель (сфинктер)
Сила мышцы определяется весом груза, который она может поднять на определенную высоту (или способна удерживать при максимальном возбуждении), не изменяя своей длины. Сила мышцы зависит от суммы сил мышечных волокон, их сократительной способности; от количества мышечных волокон в мышце и количества функциональных единиц, одновременно возбуждающихся при развитии напряжения; от исходной длины мышцы (предварительно растянутая мышца развивает большую силу); от условий взаимодействия с костями скелета.
Сократительная способность мышцы характеризуется ее абсолютной силой, т.е. силой, приходящейся на 1 см2 поперечного сечения мышечных волокон. Для расчета этого, показателя силу мышцы делят на площадь ее физиологического поперечника (т.е. на сумму площадей всех мышечных волокон, составляющих мышцу). Например: в среднем у человека сила (на 1 см2 попереченого сечения мышцы) икроножной мышцы – 6,24; разгибателей шеи – 9,0; трехглавой мышцы плеча – 16,8 кг.
Центральная нервная система регулирует силу сокращения мышцы путем изменения количества одновременно участвующих в сокращении функциональных единиц, а также частотой посылаемых к ним импульсов. Учащение импульсов ведет к возрастанию величины напряжения.
Работа мышц. В процессе мышечного сокращения потенциальная химическая энергия переходит в потенциальную механическую энергию напряжения и кинетическую энергию движения. Различают внутреннюю и внешнюю работу. Внутренняя работа связана с трением в мышечном волокне при его сокращении. Внешняя работа проявляется при перемещении собственного тела, груза, отдельных частей организма (динамическая работа) в пространстве. Она характеризуется коэффициентом полезного действия (КПД) мышечной системы, т.е. отношением производимой работы к общим энергетическим затратам (для мышц человека кпд составляет 15–20%, у физически развитых тренированных людей этот показатель несколько выше).
При статических усилиях (без перемещения) можно говорить не о работе как таковой с точки зрения физики, а о работе, которую следует оценивать энергетическими физиологическими затратами организма.
Мышца как орган. В целом мышца как орган представляет собой сложное структурное образование, которое выполняет определенные функции, состоит на 72–80% из воды и на 16–20% из плотного вещества. Мышечные волокна состоят из миофибрилл с клеточными ядрами, рибосомами, митохондриями, чувствительными нервными образованиями – проприорецепторами и другими функциональными элементами, обеспечивающими синтез белков, окислительное фосфорилирование и ресинтез аденозинтрифосфорной кислоты, транспортировку веществ внутри мышечной клетки и т.д.
Важным структурно-функциональным образованием мышцы является двигательная, или нейромоторная, единица, состоящая из одного мотонейрона и иннервируемых им мышечных волокон. Различают малые, средние и большие двигательные единицы в зависимости от количества мышечных волокон, задействованных в акте сокращения.
Система соединительнотканных прослоек и оболочек связывает мышечные волокна в единую рабочую систему, обеспечивающую с помощью сухожилий передачу возникающей при мышечном сокращении тяги на кости скелета.
Вся мышца пронизана разветвленной сетью кровеносных и веточками лимфатических сосудов. Красные мышечные волокна обладают более густой сетью кровеносных сосудов, чем белые. Они имеют большой запас гликогена и липидов, характеризуются значительной тонической активностью, способностью к длительному напряжению и выполнению продолжительной динамической работы. Каждое красное волокно имеет больше, чем белое, митохондрий – генераторов и поставщиков энергии, окруженных 3–5 капиллярами, и это создает условия для более интенсивного кровоснабжения красных волокон и высокого уровня обменных процессов.
Белые мышечные волокна имеют миофибриллы, которые толще и сильнее миофибрилл красных волокон, они быстро сокращаются, но не способны к длительному напряжению. Митохондрии белого вещества имеют только один капилляр. В большинстве мышц содержатся красные и белые волокна в разных пропорциях. Различают также мышечные волокна тонические (способные к локальному возбуждению без его распространения); фазные, способные реагировать на распространяющуюся волну возбуждения как сокращением, так и расслаблением; переходные, сочетающие оба свойства.
Мышечный насос – физиологическое понятие, связанное с мышечной функцией и ее влиянием на собственное кровоснабжение. Принципиальное его действие проявляется следующим образом: во время сокращения скелетных мышц приток артериальной крови к ним замедляется и ускоряется отток ее по венам; в период расслабления венозный отток уменьшается, а артериальный приток достигает своего максимума. Обмен веществ между кровью и тканевой жидкостью происходит через стенку капилляра.
Все энергетические расходы мышцы обеспечивает процесс окисления. Между тем длительная деятельность мышцы возможна лишь при достаточном поступлении к ней «кислорода, так как содержание веществ, способных отдавать энергию, в анаэробных условиях постепенно падает. Кроме того, при этом накапливается молочная кислота, сдвиг реакции в кислую сторону, нарушает ферментативные реакции и может привести к угнетению и дезорганизации обмена веществ и снижению работоспособности мышц. Подобные условия возникают в организме человека при работе максимальной, субмаксимальной и большой интенсивности (мощности), например при беге на короткие и средние дистанции. Из-за развившейся гипоксии (нехватки кислорода) не полностью восстанавливается АТФ, возникает так называемый кислородный долг и накапливается молочная кислота.
Аэробный ресинтез АТФ (синонимы: окислительное фосфолирирование, тканевое дыхание) – в 20 раз эффективнее анаэробного энергообразования. Накопленная во время анаэробной деятельности в процессе длительной работы часть молочной кислоты окисляется до углекислоты и воды (1/4–1/6 ее часть), образующаяся энергия используется на восстановление оставшихся частей молочной кислоты в глюкозу и гликоген, при этом обеспечивается ресинтез АТФ и КрФ. Энергия окислительных процессов используется также и для ресинтеза углеводов, необходимых мышце для ее непосредственной деятельности.
В целом углеводы дают наибольшее количество энергии для мышечной работы. Например, при аэробном окислении глюкозы образуются 38 молекул АТФ (для сравнения: при анаэробном распаде углевода образуется лишь 2 молекулы АТФ).
Мышечная деятельность, осуществляемая в большинстве видов спорта, не может полностью быть обеспечена аэробным процессом ресинтеза АТФ, и организм вынужден дополнительно включать анаэробные способы образования АТФ, имеющие более короткое время развертывания и большую максимальную мощность.
Биохимические сдвиги в организме, обусловленные накоплением молочной кислоты в результате гликолиза. Накопление лактата в крови определяет и ее щелочной резерв – щелочные компоненты всех буферных систем крови. Окончание интенсивной мышечной деятельности сопровождается снижением потребления кислорода – вначале резко, затем более плавно. В связи с этим выделяют два компонента кислородного долга: быстрый (алактатный) и медленный (лактатный). Лактатный – это то количество кислорода, которое используется после окончания работы для устранения молочной кислоты.
Количество кислорода, необходимое для полного обеспечения выполняемой работы, называют кислородным запросом. Например, в беге на 400 м кислородный запрос равен приблизительно 27 л. Время пробегания дистанции на уровне мирового рекорда составляет около 40 с. Исследования показали, что за это время спортсмен поглощает 3–4 л. Следовательно, 24 л – это общий кислородный долг (около 90% кислородного запроса), который ликвидируется после забега.
В беге на 100 м кислородный долг может доходить до 96% запроса. В беге на 800 м доля анаэробных реакций несколько снижается – до 77 %, в беге на 10000 м – до 10%, т.е. преобладающая часть энергии поставляется за счет дыхательных (аэробных) реакций.
Мышечное расслабление. За счет упругих сил, возникающих при мышечном сокращении в коллагеновых нитях, окружающих мышечное волокно, оно при расслаблении возвращается в исходное состояние. Таким образом, процесс мышечного расслабления, или релаксации, так же, как и процесс мышечного сокращения, осуществляется с использованием энергии гидролиза АТФ.
В ходе мышечной деятельности в мышцах поочередно происходят процессы сокращения и расслабления и, следовательно, скоростно-силовые качества мышц в равной мере зависят от скорости мышечного сокращения и от способности мышц к релаксаций.
Краткая характеристика гладких мышечных волокон. В гладких мышечных волокнах отсутствуют миофибриллы. Тонкие нити (актиновые) соединены с сарколеммой, толстые (миозиновые) находятся внутри мышечных клеток. В гладких мышечных волокнах отсутствуют также цистерны с ионами Са**. Под действием нервного импульса ионы Са** медленно поступают в саркоплазму из внеклеточной жидкости и также медленно уходят после того, как прекращают поступать; нервные импульсы. Поэтому гладкие мышечные волокна медленно сокращаются и медленно расслабляются.
Общий обзор скелетных мышц человека. Мышцы туловища (рис. 6 и 7) включают мышцы грудной клетки, спины и живота.
Мышцы грудной клетки участвуют в движениях верхних конечностей, а также обеспечивают произвольные и непроизвольные дыхательные движения. Дыхательные мышцы грудной клетки называются наружными и внутренними межреберными мышцами. К дыхательным мышцам относится также и диафрагма. Мышцы спины состоят из поверхностных и глубоких мышц. Поверхностные обеспечивают некоторые движения верхних конечностей, головы и шеи. Глубокие («выпрямители туловища) прикрепляются к остистым отросткам позвонков и тянутся вдоль позвоночника. Мышцы спины участвуют в поддержании вертикального положения тела, при сильном напряжении (сокращении) вызывают прогибание туловища назад. Брюшные мышцы поддерживают давление внутри брюшной полости (брюшной пресс), участвуют в некоторых движениях тела (сгибание туловища вперед, наклоны и повороты в стороны), в процессе дыхания.
Мышцы головы и шеи – мимические, жевательные и приводящие в движение голову и шею. Мимические мышцы прикрепляются одним своим концом к кости, другим – к коже лица, некоторые могут начинаться и оканчиваться в коже. Мимические мышцы обеспечивают движения кожи лица, отражают различные психические состояния человека, сопутствуют речи и имеют значение в общении. Жевательные мышцы при сокращении вызывают движение нижней челюсти вперед и в стороны. Мышцы шеи участвуют в движениях головы. Задняя группа мышц, в том числе и мышцы затылка, при тоническом (от слова «тонус») сокращении удерживает голову в вертикальном положении.
Рис. 6. Мышцы передней половины тела (по Сыльвановичу):
1 – височная мышца, 2 – жевательная мышца, 3 – грудино-ключично-сосцевидиая мышца, 4 – большая грудная мышца, 5 – передняя лестничная мышца, 6 – наружная косая мышца живота, 7 – медиальная широкая мышца бедра, 8 – латеральная широкая мышца бедра, 9 – прямая мышца бедра, 10 – портняжная мышца, 11 – нежная мышца, 12 – внутренняя косая мышца живота, 13 – прямая мышца живота, 14 – двуглавая мышца плеча, 15 – наружные межреберные мышцы, 16 – круговая мышца рта, 17 – круговая мышца глаза, 18 – лобная мышца
Мышцы верхних конечностей обеспечивают движения плечевого пояса, плеча, предплечья и приводят в движение кисть и пальцы. Главными мышцами-антагонистами являются двуглавая (сгибатель) и трехглавая (разгибатель) мышцы плеча. Движения верхней конечности и прежде всего кисти чрезвычайно многообразны. Это связано с тем, что рука служит человеку органом труда.
Рис. 7. Мышцы задней половины тела (по Сыльвановичу):
1 – ромбовидная мышца, 2 – выпрямитель туловища, 3 – глубокие мышцы ягодичной мышцы, 4 – двуглавая мышца бедра, 5 – икроножная мышца, 6 – ахиллово сухожилие, 7 – большая ягодичная мышца, 8 – широчайшая мышца спины» 9 – дельтовидная мышца, 10 – трапециевидная мышца
Мышцы нижних конечностей обеспечивают движения бедра, голени и стопы. Мышцы бедра играют важную роль в поддержании вертикального положения тела, но у человека они развиты сильнее, чем у других позвоночных. Мышцы, осуществляющие движения голени, расположены на бедре (например, четырехглавая мышца, функцией которой является разгибание голени в коленном суставе; антагонист этой мышцы – двуглавая мышца бедра). Стопа и пальцы ног приводятся в движение мышцами, расположенными на голени и стопе.
Сгибание пальцев стопы осуществляется при сокращении мышц, расположенных на подошве, а разгибание – мышцами передней поверхности голени и стопы. Многие мышцы бёдра, голени и стопы принимают не в поддержании тела человека в вертикальном положении.
Дата добавления: 2017-08-01; просмотров: 740;