МОЛЕКУЛЯРНЫЕ КОЛЛОИДЫ
(РАСТВОРЫ ВЫСОКОМОЛЕКУЛЯРНЫХ СОЕДИНЕНИЙ)
Вследствие большой молекулярной массы и гибкости цепей макромолекул высокомолекулярные соединения и их растворы обладают специфическими свойствами, способностью образовывать волокна и пленки, эластичностью, набухаемостью, структурообразованием. К важнейшим природным полимерам относятся белки и полисахариды.
Белки являются основой всех живых организмов, они составляют существенную часть живой клетки и обеспечивают ее жизнедеятельность. Белки входят в состав кожи, мышц, сухожилий, нервных волокон, крови, ферментов и гормонов, они содержатся во многих растительных и животных продуктах: молоке, яйцах, зерне, бобовых растениях и др. По химической структуре белки являются полиамидами, исходными мономерами для их синтеза служат α-аминокислоты.
Полисахариды представляют собой соединения, состоящие из многих сотен и даже тысяч моносахаридных звеньев. К наиболее важным полисахаридам относятся крахмал, целлюлоза, пектин и др.
Растворы ВМС по своим свойствам аналогичны коллоидным системам. Так же, как и у коллоидных растворов, у них сравнительно невелика скорость диффузии, небольшое осмотическое давление, они не проходят через полунепроницаемые мембраны. В отличие от золей растворы ВМС образуются самопроизвольно и не нуждаются в стабилизаторе. Растворению ВМС предшествует его набухание.
Набухание — это самопроизвольный процесс поглощения низкомолекулярного растворителя высокомолекулярным веществом, сопровождающийся увеличением массы и объема последнего. Набухание часто является начальным этапом растворения высокомолекулярных веществ. Существует ограниченное и неограниченное набухание. При ограниченном набухании объем и масса полимера достигают определенных значений и дальнейший контакт полимера с растворителем не приводит к каким-либо изме нениям. Ограниченно набухший полимер называется студнем. У неограниченного набухания отсутствует предел набухания; с течением времени полимер поглощает все большее количество жидкости и набухание переходит в растворение.
Причиной набухания является диффузия молекул низкомолекулярного растворителя в высокомолекулярное вещество. Между макромолекулами полимера обычно имеются небольшие промежутки, размер которых соизмерим с размером молекул растворителя. Благодаря этому молекулы низкомолекулярной жидкости достаточно быстро проникают между макромолекулами, раздвигая молекулярные цепи. Если макромолекулы полимера гибкие, то благодаря их тепловому движению диффузия растворителя ускоряется. Полимеры с жесткими молекулярными цепями всегда набухают значительно хуже.
Набухание включает не только простую диффузию — проникание молекул жидкости в полимер, но и сольватацию макромолекул, т. е. взаимодействие молекул растворителя с молекулами полимера. Макромолекулы полимеров состоят из полярных и неполярных групп. При взаимодействии высокомолекулярного вещества с полимером сольватируется не вся макромолекула. Если растворитель полярен, то сольватируются полярные группы, если неполярен, то сольватируются неполярные группы. В зависимости от того, каких групп в полимере больше, он будет быстрее набухать в полярном или неполярном растворителе. Обычно набухание — избирательное явление, так как полимер набухает в жидкостях, близких к нему по химическому строению. Так, углеводородные полимеры типа каучук набухают в неполярных жидкостях — бензине, бензоле. Полимеры, в состав молекул которых входят полярные группы, набухают в воде и спиртах.
Процесс набухания можно разбить на две основные стадии. На первой стадии низкомолекулярный растворитель, диффундируя в высокомолекулярное вещество, сольватирует его макромолекулы. Образование сольватной (гидратной, если средой является вода) оболочки молекулы полимера сопровождается выделением теплоты, поэтому первая стадия набухания характеризуется положительным тепловым эффектом.
Молекулы растворителя в сольватной оболочке обладают плотной упаковкой, которая обусловливается близким расположением молекул около сольватируемых групп, и, следовательно, растворитель в сольватной оболочке имеет более высокую плотность. Вследствие сжатия растворителя в сольватных оболочках на первой стадии набухания наряду с увеличением объема полимера происходит уменьшение суммарного объема всей системы. Сумма объемов полимера до набухания и поглощенной полимером жидкости больше, чем объем набухшего полимера. Это явление называется внутренним сжатием или контракцией
На второй стации набухания, идущей без теплового эффекта, а иногда и с поглощением теплоты, наблюдается обычно основное увеличение объема полимера. Молекулы жидкости на этой стадии набухания диффундируют в полимер, и происходит смешивание больших и гибких макромолекул с молекулами растворителя. Из-за односторонней диффузии, характеризующей эту стадию, ее называют осмотической.
Иногда на второй стадии набухания происходит переход некоторой части макромолекул в низкомолекулярный растворитель. Ограниченное набухание заканчивается на второй стадии, неограниченное набухание приводит к растворению полимера.
Набухание полимера характеризуется степенью набухания. Степень набухания зависит от прочности и числа межмолекулярных связей в полимере. Чем прочнее межмолекулярные связи и чем их больше, тем хуже набухает полимер.
Если набухание высокомолекулярного вещества идет в каком-либо ограниченном пространстве, препятствующем увеличению объема, то возникает давление набухания, достигающее на начальной стадии набухания нескольких мегапаскалей. Оно может стать причиной разрыва емкостей, наполненных набухающими материалами. При хранении и перевозке многих пищевых продуктов, таких, как зерно, крупа, мука, необходимо учитывать возможность их набухания.
Чаще всего жидкой дисперсионной средой в пищевых производствах служит вода. При этом следует учитывать, что часть воды находится в свободном состоянии, а часть — в связанном.
В системах, в состав которых входят биополимеры (высокомолекулярные природные соединения — белки, полисахариды), часть воды, прочно связанная с поверхностью этих макромолекул, образует гидратную оболочку. Например, 1 г яичного альбумина связывает 0,25 г воды, образуя гидратный слой толщиной 0,25 нм. В связи с присутствием макромолекул связанная вода значительно отличается по своим свойствам от обычной воды. Ее нельзя использовать в качестве растворителя веществ, она не замерзает даже при -700С. Для связанной воды характерна пониженная электропроводность. Свободная же вода служит реакционной средой и растворителем веществ. При участии гидролитических ферментов она вступает во множество реакций, в результате которых образуются новые вещества. Таким образом, свободная вода является и активным участником биохимических реакций.
Ярким примером процесса набухания высокополимеров служит образование клейковины теста. В тесте молекулы набухшего белка разделены водными оболочками, препятствующими соприкосновению их и образованию клейковинных нитей.
Тесто, используемое для мучных кондитерских изделий, — более сложный комплекс, так как в состав его кроме муки и воды входят и другие виды сырья, в первую очередь сахар и жир, влияющие на набухаемость коллоидов муки.
Сахар, присутствующий в кондитерском тесте в виде водного раствора, оказывает влияние на степень набухания белков клейковины. С увеличением концентрации сахара степень набухания белков снижается.
Жир, адсорбируясь на поверхности белков, образует пленки, препятствующие проникновению воды внутрь макромолекул белков, что ослабляет связь между ними, при этом уменьшается упругость и увеличивается пластичность теста.
Таким образом, регулируя количество сахара и жира, добавляемых при замесе теста, можно получать тесто с определенными физическими свойствами.
Дата добавления: 2017-06-02; просмотров: 984;