Классификация нагрузок.
Статистические нагрузки не меняются со временем или меняются очень медленно. При действии статистических нагрузок проводится расчет на прочность.
Повторно-переменные нагрузки многократно меняют значение или значение и знак. Действие таких нагрузок вызывает усталость металла.
Динамическиенагрузки меняют свое значение в короткий промежуток времени, они вызывают большие ускорения и силы инерции и могут привести к внезапному разрушению конструкции.
Из теоретической механики известно, что по способу приложения нагрузки могут быть сосредоточенными или распределеннымипо поверхности.
Реально передача нагрузки между деталями происходит не в точке, а на некоторой площадке, т. е. нагрузка является распределенной.
Однако если площадка контакта пренебрежительно мала по сравнению с размерами детали, силу считают сосредоточенной.
При расчетах реальных деформируемых тел в сопротивлении материалов заменять распределенную нагрузку сосредоточенной не следует.
Аксиомы теоретической механики в сопротивлении материалов используются ограниченно.
Нельзя переносить пару сил в другую точку детали, перемещать сосредоточенную силу вдоль линии действия, нельзя систему сил заменять равнодействующей при определении перемещений. Все вышеперечисленное меняет распределение внутренних сил в конструкции.
В процессе строительства и эксплуатации здание испытывает на себе действие различных нагрузок. Внешние воздействия можно разделить на два вида: силовые и несиловые или воздействия среды.
К силовым воздействиям относятся различные виды нагрузок:
постоянные– от собственного веса (массы) элементов здания, давления грунта на его подземные элементы;
временные (длительные) – от веса стационарного оборудования, длительно хранящихся грузов, собственного веса постоянных элементов здания (например, перегородок);
кратковременные – от веса (массы) подвижного оборудования (например, кранов в промышленных зданиях), людей, мебели, снега, от действия ветра;
особые – от сейсмических воздействий, воздействий в результате аварий оборудования и т.п.
К несиловым относятся:
температурные воздействия, вызывающие изменения линейных размеров материалов и конструкций, которое приводит в свою очередь к возникновению силовых воздействий, а также влияющие на тепловой режим помещения;
воздействия атмосферной и грунтовой влаги, а также парообразной влагисодержащейся в атмосфере и в воздухе помещений, вызывающие изменение свойств материалов из которых выполнены конструкции здания;
движения воздуха вызывающее не только нагрузки (при ветре), но и его проникновение внутрь конструкции и помещений, изменение их влажностного и теплового режима;
воздействие лучистой энергии солнца (солнечная радиация) вызывающие в результате местного нагрева изменение физико-технических свойств поверхностных слоев материала, конструкций, изменение светового и теплового режима помещений;
воздействие агрессивных химических примесей, содержащихся в воздухе, которые в присутствии влаги могут привести к разрушению материала конструкций здания (явлении коррозии);
биологические воздействия, вызываемые микроорганизмами или насекомыми, приводящие к разрушению конструкций из органических строительных материалов;
воздействие звуковой энергии (шума) и вибрации от источников внутри или вне здания.
По месту приложения усилий нагрузки разделяются на сосредоточенные (например, вес оборудования) и равномернораспределенные (собственный вес, снег).
По характеру действия нагрузки могут быть статическими, т.е. постоянными по величине во времени и динамическими (ударными).
По направлению – горизонтальные (ветровой напор) и вертикальные (собственный вес).
Т.о. на здание действует самые различные нагрузки по величине, направлению, характеру действия и месту приложения.
Рис. 2.3. Нагрузки и воздействия на здание.
Может получится такое сочетание нагрузок, при котором все они будут действовать в одном направлении, усиливая друг друга. Именно на такие неблагоприятные сочетания нагрузок рассчитывают конструкции здания. Нормативные значения всех усилий, действующих на здание, приведены в ДБН или СНиПе.
5. Центрально-растянутые стальные элементы: схема работы, применение, расчет на прочность
Центрально-растянутые элементы – это элементы, в нормальном сечении которых точка приложения продольной растягивающей силы N совпадает с точкой приложения равнодействующей усилий в продольной арматуре.
К центрально-растянутым элементам относятся затяжки арок, нижние пояса и нисходящие раскосы ферм и другие элементы (рис. 51).
Центрально-растянутые элементы проектируют, как правило, предварительно-напряженными.
Основные принципы конструирования центрально-растянутых элементов:
- стержневую рабочую арматуру без предварительного напряжения соединяют по длине сваркой;
- стыки внахлестку без сварки допускаются только в плитных и стеновых конструкциях;
- растянутая предварительно-напряженная арматура в линейных элементах не должна иметь стыков;
- в поперечном сечении предварительно напряженную арматуру размещают симметрично (чтобы избежать внецентренного обжатия элемента);
Внецентренно-растянутые элементы – это элементы, которые одновременно растягиваются продольной силой N и изгибаются моментом М, что равносильно внецентренному растяжению силой N с эксцентриситетом eo относительно продольной оси элемента. При этом различают 2 случая: когда продольная растягивающая сила N приложена между равнодействующими усилий в растянутой и сжатой арматуре, и положение, когда сила приложена за пределами данного расстояния.
К внецентренно-растянутым элементам относятся нижние пояса безраскосных ферм и другие конструкции.
Внецентренно-растянутые элементы армируют аналогично изгибаемым элементам, а при положении N в пределах сечения – аналогично армированию центрально-растянутых элементов.
Внецентренно-растянутые также обычно подвергаются предварительному напряжению, что существенно повышает их трещиностойкость.
Разрушение центрально-растянутых элементов происходит после того, как в бетоне образуются сквозные трещины, и он выключится из работы, а в арматуре напряжения достигнут предела текучести.
Несущая способность центрально-растянутого элемента обусловлена предельным сопротивлением арматуры без участия бетона:
,
где Rs – расчетное сопротивление арматуры растяжению,
As,tot – площадь сечения всей продольной арматуры.
Дата добавления: 2017-05-18; просмотров: 5707;