Схемы выпрямителей для источников питания
Двухполупериодная мостовая схема. На рис. 1.4.1 показана схема источника питания постоянного тока с мостовым выпрямителем, который мы только что рассмотрели. Промышленность изготавливает мостовые схемы в виде функциональных модулей. Маленькие мостовые модули рассчитаны на предельный ток 1 А и напряжение пробоя от 100 до 600 В, а иногда до 1000 В. Для больших мостовых выпрямителей предельный ток равен 25 А и выше. В табл. 6.4 приведены параметры нескольких типов таких модулей.
Рис. 1.74. Схема мостового выпрямителя.
Значок полярности и электрод в виде дуги служат для обозначения поляризованного конденсатора, заряжать его с другой полярностью недопустимо.
Рис. 1.4.2. Двухполупериодный выпрямитель на основе трансформатора со средней точкой. Формирование двухполярного (расщепленного) напряжения питания
Двухполупериодный однофазный выпрямитель. Схема двухцолуцериодного однофазного выпрямителя приведена на рис. 1.4.2. Выходное напряжение здесь в 2 раза меньше, чем в схеме мостового выпрямителя. Схема двухполупериодного однофазного выпрямителя не является эффективной с точки зрения использования трансформатора, так как каждая половина вторичной обмотки используется только в одном полупериоде. В связи с этим ток в обмотке за этот интервал времени в 2 раза больше, чем в простой двухполупериодной схеме. Согласно закону Ома, температура нагрева обмотки пропорциональна произведению l2R9 значит, за время в 2 раза меньшее нагрев будет в 4 раза больше или в среднем больше по сравнению с эквивалентной двухполупериодной схемой. Трансформатор для этой схемы следует выбирать так, чтобы его предельный ток был в 1,4 раз больше, чем у трансформатора мостовой схемы, в противном случае такой выпрямитель будет более дорогим и более громоздким, чем мостовой.
Широко распространена мостовая однофазная двухполупериодная схема выпрямителя. Она позволяет рсщеплять напряжение питания (получать на выходе одинаковые напряжения положительной и отрицательной полярности). Эта схема эффективна, так как в каждом полуперйоде входного сигнала используются обе половины вторичной обмотки.
Упражнение 1.4.1.Это упражнение поможет вам разобраться в механизме нагрева обмотки, пропорционального I2R, и понять, в чем проявляется недостаток однофазного выпрямителя. На какое предельное минимальное значение тока должен быть расчитан плавкий предохранитель, чтобы в цепи мог протекать ток, изменяющийся согласно графику, показанному на рис. 1.76, и имеющий среднюю амплитуду 1 А? Подсказка: предохранитель «перегорает», когда в цепи начинает протекать ток, превышающий предельное значение тока предохранителя. При этом в предохранителе расплавляется металлический проводник (температура его нагрева пропорциональна I2R). Допустим, что и в нашем случае температурная постоянная времени для плавкого предохранителя значительно больше, чем период прямоугольных колебаний, т. е. предохранитель реагирует на значение 1\ осредненное за несколько периодов входного сигнала.
ТРАНЗИСТОРЫ
Транзистор-это один из основных «активных» компонентов. Он представляет собой устройство, которое может усиливать входной сигнал по мощности. Увеличение мощности сигнала происходит за счет внешнего источника питания. Отметим, что увеличение амплитуды сигнала не является в данном случае определяющим. Так, например, повышающий трансформатор - «пассивный» компонент, такой же, как резистор или конденсатор, обеспечивает усиление по напряжению, но не может усилить сигнал по мощности. Устройства, которые обладают свойством усиления по мощности, характеризуются способностью к генерации, обусловленной передачей выходного сигнала обратно на вход.
Изобретателей транзистора когда-то заинтересовала именно способность устройства усиливать сигнал по мощности. Для начала они соорудили с помощью транзистора усилитель звуковых частот для громкоговорителя и убедились, что на выходе сигнал больше, чем на входе.
Транзистор является неотъемлемой частью всякой электронной схемы, начиная от простейшего усилителя или генератора до сложнейшей цифровой вычислительной машины. Интегральны^ схемы (ИС), которые в основном заменили схемы, собранные из дискретных транзисторов, представляют собой совокупности транзисторов или других компонентов, построенные на едином кристалле полупроводникового материала.
Обязательно следует разобраться в том, как работает транзистор, даже если вам придется пользоваться в основном интегральными схемами. Дело в том, что, для того чтобы собрать электронное устройство из интегральных схем и подключить его к внешним цепям, необходимо знать входные и выходные характеристики каждой используемой ИС. Кроме того, транзистор служит основой построения межсоединений, как внутренних (между ИС), так и внешних. И наконец, иногда (и даже довольно часто) случается, что подходящей ИС промышленность не выпускает и приходится прибегать к схемам, собранным из дискретных компонентов. Как вы сами вскоре убедитесь, транзисторы сами по себе очень интересны, и ознакомление с их работой доставит вам удовольствие.
Мы будем рассматривать транзисторы совершенно не так, как авторы других книг. Обычно изучая транзистор, пользуются его эквивалентной схемой и А-па-раметрами. На наш взгляд, такой подход сложен и надуман. И дело не только в том, что, глядя на мудреные уравнения, вы едва ли поймете, как работает схема, скорее всего вы будете иметь смутное представление о параметрах транзистора, их значениях и самое главное диапазонах изменения.
Мы предлагаем вам другой подход. В этой главе мы построим простую мо-дель транзистора и с ее помощью создадим несколько схем. Как только начнут проявляться ограничения модели, дополним ее с учетом уравнений Эберса-Молла. Полученная таким образом модель даст правильное представление о работе транзистора; с ее помощью вы сможете создавать самые хорошие схемы, не прибегая к большим расчетам. Кроме того, характеристики ваших схем не будут серьезно зависеть от таких неуправляемых параметров транзистора как, например, коэффициент усиления по току.
И наконец, несколько слов о принятых инженерной практике условностях. Напряжение на выводе транзистора, взятое по отношению к потенциалу земли, обозначается буквенным индексом (К, Б или Э): например, Uк-это напряжение на коллекторе. Напряжение между выводами обозначается двойным индексом, например, Uбэ-это напряжение между базой и эмиттером. Если индекс образован двумя одинаковыми буквами, то это-напряжение источника питания: Uкк-это напряжение питания (обычно положительное) коллектора, Uэ напряжение питания (обычно отрицательное) эмиттера.
Дата добавления: 2017-05-18; просмотров: 677;