Максвелл ввел понятие полного тока,равного сумме токов проводимости (а также конвекционных токов) и смещения.Плотность полного тока 27 страница
§ 274. Гипероны. Странность и четность элементарных частиц
В ядерных фотоэмульсиях (конец 40-х годов) и на ускорителях заряженных частиц (50-е годы) обнаружены тяжелые нестабильные элементарные частицы массой, большей массы нуклона, названныегиперонами (от греч.hyper — сверх, выше). Известно несколько типов гиперонов: лямбда ( ), сигма ( , , ), кси ( , ) и омега ( ). Существование -гиперона следовало из предложенной (1961) М. Гелл-Манном (р. 1929) (американский физик; Нобелевская премия 1969 г.) схемы для классификации сильно взаимодействующих элементарных частиц. Все известные в то время частицы укладывались в эту схему, но в ней оставалось одно незаполненное место, которое должна была занять отрицательно заряженная частица массой, равной примерно 3284тe. В результате специально поставленного эксперимента был действительно обнаружен -гиперон массой 3284тe.
Гипероны имеют массы в пределах (2183—3273) тe, их спин равен ½ (только спин -гиперона равен 3/2), время жизни приблизительно 10–10 с (для -гиперона время жизни равно приблизительно 10–20 с). Они участвуют в сильных взаимодействиях, т. е. принадлежат к группе адронов. Гипероны распадаются на нуклоны и легкие частицы (p-мезоны, электроны, нейтрино и g-кванты).
Детальное исследование рождения и превращения гиперонов привело к установлению новой квантовой характеристики элементарных частиц — так называемой странности. Ее введение оказалось необходимым для объяснения ряда парадоксальных (с точки зрения существовавших представлений) свойств этих частиц. Дело в том, что гипероны должны были, как представлялось, обладать временем жизни примерно 10–23 с, что в 1013 раз (!) меньше установленного на опыте. Подобные времена жизни можно объяснить лишь тем, что распад гиперонов происходит в результате слабого взаимодействия. Кроме того, оказалось, что всякий раз гиперон рождается в паре с К-мезоном. Например, в реакции
(274.1)
с -гипероном всегда рождается К0-мезон, в поведении которого обнаруживаются те же особенности, что и у гиперона. Распад же -гиперона происходит по схеме
(274.2)
Особенности поведения гиперонов и К-мезонов были объяснены в 1955 г. М. Гелл-Манном с помощью квантового числа — странности S, которая сохраняется в процессах сильного и электромагнитного взаимодействий. Если приписать каонам S=1, а - и S-гиперонам S=–1 и считать, что у нуклонов и p-мезонов S=0, то сохранение суммарной странности частиц в сильном взаимодействии объясняеткаксовместное рождение -гиперона с К0-мезоном, так и невозможность распада частиц с не равной нулю странностью за счет сильного взаимодействия на частицы, странность которых равна нулю. Реакция (274.2) идет с нарушением странности, поэтому она не может происходить в результате сильного взаимодействия. X-Гиперонам, которые рождаются совместно с двумя каонами, приписывают S= –2; W-гиперонам — S=–3.
Из закона сохранения странности следовало существование частиц, таких, как -мезон, -, -гипероны, которые впоследствии были обнаружены экспериментально. Каждый гиперон имеет свою античастицу.
Элементарным частицам приписывают еще одну квантово-механическую величину —четность Р — квантовое число, характеризующее симметрию волновой функции элементарной частицы (или системы элементарных частиц) относительно зеркального отражения. Если при зеркальном отражении волновая функция частицы не меняет знака, то четность частицы Р=+1 (четность положительная), если меняет знак, то четность частицы Р= –1 (отрицательная).
Из квантовой механики вытекаетзакон сохранения четности, согласно которому при всех превращениях, претерпеваемых системой частиц, четность состояния не изменяется. Сохранение четности связано со свойством зеркальной симметрии пространства и указывает на инвариантность законов природы по отношению к замене правого левым, и наоборот. Однако исследования распадов К-мезонов привели американских физиков Т. Ли и Ч. Янга (1956 г.; Нобелевская премия 1957 г.) к выводу о том, что в слабых взаимодействиях закон сохранения четности может нарушаться. Целый ряд опытов подтвердили это предсказание. Таким образом, закон сохранения четности, как и закон сохранения странности, выполняется только при сильных и электромагнитных взаимодействиях.
§ 275. Классификация элементарных частиц. Кварки
В многообразии элементарных частиц, известных к настоящему времени, обнаруживается более или менее стройная система классификации. Для ее пояснения в табл. 8 представлены основные характеристики рассмотренных выше элементарных частиц. Характеристики античастиц не приводятся, поскольку, как указывалось в § 273, модули зарядов и странности, массы, спины, изотопические спины и время жизни частиц и их античастиц одинаковы, они различаются лишь знаками зарядов и странности, а также знаками других величии, характеризующих их электрические (а следовательно, и магнитные) свойства. В таблице нет также античастиц фотона и p0-и h0-мезонов, так как антифотон и антипи-ноль- и антиэта-ноль-мезоны тождественны с фотоном и p0- и h0-мезонами.
В табл. 8 элементарные частицы объединены в три группы (см. § 272): фотоны, лептоны и адроны. Элементарные частицы, отнесенные к каждой из этих групп, обладают общими свойствами и характеристиками, которые отличают их от частиц другой группы.
К группе фотонов относится единственная частица — фотон, который переносит электромагнитное взаимодействие. В электромагнитном взаимодействии участвуют в той или иной степени все частицы, как заряженные, так и нейтральные (кроме нейтрино).
К группе лептонов относятся электрон, мюон, таон, соответствующие им нейтрино, а также их античастицы. Все лептоны имеют спин, равный ½, и, следовательно, являются фермионами (см. § 226), подчиняясь статистике Ферми — Дирака (см. § 235).
Таблица 8
Поскольку лептоны в сильных взаимодействиях не участвуют, изотопический спин им не приписывается. Странность лептонов равна нулю.
Элементарным частицам, относящимся к труппе лептонов, приписывают так называемоелептонное число (лептонный заряд) L. Обычно принимают, что L=+1 для лептонов (е–, m–, t–, ne, nm, nt), L=–1 для антилептонов (е+, m+, t+, , , ) и L=0 для всех остальных элементарных частиц. Введение L позволяет сформулироватьзакон сохрания лептонного числа: в замкнутой системе при всех без исключения процессах взаимопревращаемости элементарных частиц лептонное число сохраняется.
Теперь понятно, почему при распаде (258.1) нейтральная частица названа антинейтрино, а при распаде (263.1) — нейтрино. Taк как у электрона и нейтрино L= +1, а у позитрона и антинейтрино L= –1, то закон сохранения лептонного числа выполняется лишь при условии, что антинейтрино возникает вместе с электроном, а нейтрино — с позитроном.
Основную часть элементарных частиц составляют адроны. К группеадронов относятся пионы, каоны, h-мезон, нуклоны, гипероны, а также их античастицы (в табл. 8 приведены не все адроны).
Адронам приписываютбарионное число (барионный заряд) В. Адроны с В=0образуют подгруппумезонов (пионы, каоны, h-мезон), а адроны с В= +1 образуют подгруппубарионов (от греч. «барис» — тяжелый; сюда относятся нуклоны и гипероны). Для лептонов и фотона В=0. Если принять для барионов В=+1, для антибарионов (антинуклоны, автигипероны) В=–1, а для всех остальных частиц В=0, то можно сформулироватьзакон сохранения барионного числа: в замкнутой системе при всех процессах взаимопревращаемости элементарных частиц барионное число сохраняется.
Из закона сохранения барионного числа следует, что при распаде бариона наряду с другими частицами обязательно образуется барион. Примерами сохранения барионного числа являются реакции (273.1)—(273.5). Барионы имеют спин, равный ½ (только спин W–-гиперона равен 3/2), т. е. барионы, как и лептоны, являются фермионами.
Странность S для различных частиц подгруппы барионов имеет разные значения (см. табл. 8).
Мезоны имеют спин, равный нулю, и, следовательно, являются бозонами (см. § 226), подчиняясь статистике Бозе — Эйнштейна (см. § 235). Для мезонов лептонные и барионные числа равны нулю. Из подгруппы мезонов только каоны обладают S=+1, а пионы и h-мезоны имеют нулевую странность.
Подчеркнем еще раз, что для процессов взаимопревращаемости элементарных частиц, обусловленных сильными взаимодействиями, выполняются все законы сохранения (энергии, импульса, момента импульса, зарядов (электрического, лептонного и барионного), изоспина, странности и четности). В процессах, обусловленных слабыми взаимодействиями, не сохраняются только изоспин, странность и четность.
В последние годы увеличение числа элементарных частиц происходит в основном вследствие расширения группы адронов.
Поэтому развитие работ по их классификации все время сопровождалось поисками новых, более фундаментальных частиц, которые могли бы служить базисом для построения всех адронов. Гипотеза о существовании таких частиц, названных кварками, была высказана независимо друг от друга (1964) австрийским физиком Дж. Цвейгом (р. 1937) и Гелл-Манном.
Название «кварк» заимствовано из романа ирландского писателя Дж. Джойса «Поминки по Финнегану» (герою снится сон, в котором чайки кричат: «Три кварка для мастера Марка»).
Согласно модели Гелл-Манна — Цвейга, все известные в то время адроны можно было построить, постулировав существование трех типов кварков (и, d, s) и соответствующих антикварков ( , , ), если им приписать характеристики, указанные в табл. 9 (в том числе дробные электрические и барионные заряды). Самое удивительное (почти невероятное) свойство кварков связано с их электрическим зарядом, поскольку еще никто не находил частицы с дробным значением элементарного электрического заряда. Спин кварка равен ½, поскольку только из фермионов можно «сконструировать» как фермионы (нечетное число фермионов), так и бозоны (четное число фермионов).
Адроны строятся из кварков следующим образом: мезоны состоят из пары кварк — антикварк, барионы — из трех кварков (антибарион — из трех антикварков). Так, например, пион p+ имеет кварковую структуру , пион p– — , каон К+ — , протон — uud, нейтрон — udd, S+-гиперон — uus, S0-гиперон — uds и т. д.
Во избежание трудностей со статистикой (некоторые бариоиы, например W–-гиперон, состоят из трех одинаковых кварков (sss), что запрещено принципом Паули; см. § 227) на данном этапе предполагают, что каждый кварк (антикварк) обладает специфической квантовой характеристикой ——цветом: «желтым», «синим» и «красным». Тогда, если кварки имеют неодинаковую «окраску», принцип Паули не нарушается.
Углубленное изучение модели Гелл-Манна — Цвейга, а также открытие в 1974 г. истинно нейтрального джей-пси-мезона (J/Y) массой около 6000me со временем жизни примерно 10–20 с и спином, равным единице, привело к введению нового кварка — так называемого с-кварка и новой сохраняющейся величины — «очарования» (от англ. charm).
Подобно странности и четности, очарование сохраняется в сильных и электромагнитных взаимодействиях, но не сохраняется в слабых. Закон сохранения очарования объясняет относительно долгое время жизни J/Y-мезона. Основные характеристики с-кварка приведены в табл. 9.
Таблица 9
Частице J/Y приписывается кварковая структура сс. Структура называется чармонием — атомоподобная система, напоминающая позитроний (связанная водородоподобная система, состоящая из электрона и позитрона, движущихся вокруг общего центра масс).
Кварковая модель оказалась весьма плодотворной, она позволила определить почти все основные квантовые числа адронов. Например, из этой модели, поскольку спин кварков равен ½ следует целочисленный (нулевой) спин для мезонов и полуцелый — для барионов в полном соответствии с экспериментом. Кроме того, эта модель позволила предсказать также и новые частицы, например W–-гиперон. Однако при использовании этой модели возникают и трудности. Кварковая модель не позволяет, например, определить массу адронов, поскольку для этого необходимо знание динамики взаимодействия кварков и их масс, которые пока неизвестны.
В настоящее время признана точка зрения, что между лептонами и кварками существует симметрия: число лептонов должно быть равно числу типов кварков. В 1977 г. был открыт сверхтяжелый мезон массой около 20 000me, который представляет собой структуру из кварка и антикварка нового типа — b-кварка (является носителем сохраняющейся в сильных взаимодействиях величины, названной«прелестью»(от англ. beauty)). Заряд b-кварка равен – 1/3. Предполагается, что существует и шестой кварк t с зарядом + 2/3, который уже решено назватьистинным (от англ. truth — истина), подобно тому как с-кварк называют очарованным, b-кварк — прелестным. В физике элементарных частиц введен «аромат» — характеристика типа кварка (и, d, s, с, b, t?), объединяющая совокупность квантовых чисел (странность, очарование, прелесть и др.), отличающих один тип кварка от другого, кроме цвета. Аромат сохраняется в сильных и электромагнитных взаимодействиях. Является ли схема из шести лептонов и шести кварков окончательной или же число лептонов (кварков) будет расти, покажут дальнейшие исследования.
ЗАКЛЮЧЕНИЕ
Итак, изложение курса физики закончено. Начав его детальное изучение с физических основ механики, мы последовательно рассмотрели основы молекулярной физики и термодинамики, учение об электричестве и электромагнетизме, колебания и волны, оптику, элементы квантовой физики и физики твердого тела, физики ядра и элементарных частиц. Приведенный перечень разделов, изложенных в курсе, позволяет проследить логику развития физики и эволюцию ее идей, а также представить основные периоды и этапы ее становления.
Со времени выхода в свет труда И. Ньютона «Математические начала натуральной философии» (1687), в котором он сформулировал три основных закона механики и закон всемирного тяготения, прошло более трехсот лет. За это время физика прошла путь от макроскопического уровня изучения явлений до исследования материи на уровне элементарных частиц.
Однако, несмотря на огромные успехи, которых физика достигла за это время и особенно в XX столетии, современная физика и астрофизика стоят перед целым рядом нерешенных проблем.
Например, проблемы физики плазмы — разработка методов разогрева плазмы до примерно 109 К и ее удержание в течение времени, достаточного для протекания термоядерной реакции; квантовой электроники — существенное повышение к.п.д. лазеров, расширение диапазона длин волн лазерного излучения с плавной перестройкой по частоте и т. д.; физики твердого тела — получение материалов с наперед заданными свойствами и, в частности, с экстремальными параметрами по большому «спектру» характеристик, создание высокотемпературных сверхпроводников и т. д.; физики атомного ядра — осуществление управляемого термоядерного синтеза, поиск долгоживущих элементов с Z = 114¸126, предсказанных теорией, построение теории сильных взаимодействий и т.д.; физики элементарных частиц — доказательство реальности существования кварков и глюонов (частиц, осуществляющих взаимодействие между кварками), построение квантовой теории тяготения и т. д.; астрофизики — природа квазаров (мощных внегалактических источников электромагнитного излучения), причины вспышек сверхновых звезд, состояние материи при огромных плотностях и давлениях внутри нейтронных звезд и т.д. Поставленные проблемы требуют дальнейшего разрешения.
Дата добавления: 2017-04-20; просмотров: 308;