Средняя арифметическая величина

 

Если в формулу (6.1) подставить значение к=1, то получается средняя арифметическая величина, т.е.

. (6.2)

Поскольку в ранжированном ряду при всех вариантах f=1, то в этом случае применяется средняя арифметическая невзвешенная (простая) величина, т.е.

, (6.3)

где n – число единиц в статистической совокупности.

Расчет средней арифметической простой можно показать на примере ранжированного ряда, составленного по площади посева льна-долгунца в 20 сельскохозяйственных организациях района (табл. 6.1.).

 

Т а б л и ц а 6.1. Расчет средней арифметической простой в ранжированном ряду распределения

 

Ранговые №№ Варианты (значения признака)
Символы Посевная площадь, га
х1
х2
х3
n хn
Σ Σх

 

Подставив данные табл. 6.1 в формулу (6.3), получаем среднее арифметическое простое значение посевной площади льна-долгунца, приходящейся на 1 хозяйство:

.

Поскольку в дискретном ряду распределения каждая варианта представлена определенной локальной частотой (частостью), то среднее значение для каждого такого ряда можно рассчитать по формуле средней арифметической взвешенной, т.е.

, (6.4)

где х – варианты (значение признака); f – локальные частоты (частости).

Определение средней арифметической взвешенной величины можно показать на примере расчёта средней урожайности льносоломки в 20 сельскохозяйственных организациях района (табл. 6.2.).

 

Т а б л и ц а 6.2. Расчет средней арифметической взвешенной в дискретном ряду распределения

 

№ п.п. Варианты Локальные частоты Взвешенные средние варианты
Символы Урожайность, ц/га Символы Посевная площадь, га Символы Валовой сбор, т
  х   f   xf  
х1 f1 х1f1
х2 f2 х2f2
х3 f3 х3f3
  ..
n хn fn хnfn
Σ     Σ f Σ xf

 

Подставив в формулу (6.4) данные табл. 6.2, можно рассчитать среднюю арифметическую взвешенную величину для дискретного ряда распределения:

Таким образом, средняя урожайность, взвешенная по посевной площади льна-долгунца, в сельскохозяйственных организациях района, составила 50 ц/га льносоломки.

Принцип расчёта средней величины в интервальном вариационном ряду аналогичен расчёту среднего значения признака для дискретного ряда (формула 6.4); различия состоят лишь в некоторых деталях.

При вычислении среднего значения признака в интервальном ряду распределения, когда в столбце вариант имеется не одно, а два значения, показывающие нижнюю и верхнюю границы интервала, прежде всего целесообразно найти его срединное значение, т.е. центр интервала, который определяется как простая средняя арифметическая из нижней и верхней варианты каждого интервала, или как их полусумма. Порядок расчёта средней арифметической взвешенной для интервального вариационного ряда по урожайности льносоломки в сельхозорганизациях с закрытыми интервалами показан в табл. 6.3.

 

Т а б л и ц а 6.3. Расчёт средней взвешенной варианты в интервальном ряду








Дата добавления: 2017-04-20; просмотров: 496;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.006 сек.