Биоочистка газовоздушных выбросов

В воздухе больших промышленных городов содержится огромное количество вредных веществ. При этом концентрация многих токсикантов превышает допустимые уровни. Основной вклад в загрязнение атмосферы вносят предприятия нефтеперерабатывающей, химической, пищевой и перерабатывающей промышленности, а также большие сельскохозяйственные комплексы, отстойники сточных вод, установки по обезвреживанию отходов. Среди этих веществ – органические (ароматические и непредельные углеводороды, азот-, кислород-, серо- и галогенсодержащие соединения) и неорганические вещества (сернистый газ, сероуглерод, окислы углерода, аммиак, хлорводород, галогены). В воздушных бассейнах больших промышленных городов присутствуют десятки различных соединений, в том числе дурнопахнущие, способные даже в незначительных концентрациях представлять угрозу для здоровья, а также вызывать у людей чувство дискомфорта.

Для очистки воздуха применяют различные методы - физические, химические и биологические, однако уровень и масштабы их применения в настоящее время чрезвычайно далеки от требуемых. Среди применяемых физических методов - абсорбция примесей на активированном угле и других поглотителях, абсорбция жидкостями. Наиболее распространенными химическими методами очистки воздуха являются озонирование, прокаливание, каталитическое дожигание, хлорирование. Биологические методы очистки газовоздушных выбросов начали применять сравнительно недавно, и пока в ограниченных масштабах.

Биологические методы очистки воздуха базируются на способности микроорганизмов разрушать в аэробных условиях широкий спектр веществ и соединений до конечных продуктов, СО2 и Н2О. Широко известна способность микроорганизмов метаболизировать алифатические, ароматические, гетероциклические, ациклические и различные С1-соединения. Микроорганизмы утилизируют аммиак, окисляют сернистый газ, сероводород и диметилсульфоксид. Образуемые сульфаты утилизируются другими микробными видами. Есть данные об эффективном окислении аэробными карбоксидобактериями моноокиси углерода, являющейся одним из наиболее опасных воздушных загрязнителей.

Представители рода Nocardia эффективно разрушают стерины и ксилол; Hyphomicrobium - дихлорэтан; Xanthobacterium – этан и дихлорэтан; Mycobacterium – винилхлорид. Наиболее широким спектром катаболических путей характеризуются почвенные микроорганизмы. Так, только представители рода Pseudomonas способны использовать в качестве единственного источника углерода, серы или азота свыше 100 соединений - загрязнителей биосферы. Большие возможности для повышения биосинтетического потенциала микрорганизмов-деструкторов токсичных веществ имеются на вооружении у микробиологов и генетиков, включая методы традиционной селекции и отбора, а также новейшие достижения клеточной и генетической инженерии. Подавляющее число токсических загрязнителей атмосферы может быть разрушено монокультурами микроорганизмов, но более эффективно применение смешанных культур, имеющих больший каталитический потенциал и, следовательно, деструктурирующую способность. Для разрушения трудно утилизируемых соединений в ряде случаев микроорганизмы целесообразно адаптировать к таким субстратам и только после этого вводить их в рабочее тело действующих установок.

Для биологической очистки воздуха применяют три типа установок: биофильтры, биоскрубберы и биореакторы с омываемым слоем.

В качестве носителя для фильтрующего слоя в биофильтре используют природные материалы - компост, торф и др. Эти материалы содержат в своем составе различные минеральные соли и вещества, необходимые для развития микроорганизмов. Поэтому в биофильтры не вносят каких-либо минеральных добавок. Воздух, подлежащий очистке, подается вентилятором в систему, проходит через фильтрующий слой в любом направлении, снизу – вверх или наоборот. При этом воздух должен проходить через всю массу фильтрующего слоя равномерно. Поэтому требуется однородность слоя и определенная степень влажности. Оптимальная для очистки воздуха влажность фильтрующего слоя составляет 40 – 60 % от веса материала носителя. При недостаточной влажности материала фильтрующего слоя в нем образуются трещины, материал пересыхает. Это затрудняет прохождение воздуха и снижает физиологическую активность микроорганизмов. Увлажнение материала обеспечивается распылением воды на поверхности фильтрующего слоя. При избыточной влажности в толще слоя происходит образование анаэробных зон с высоким аэродинамическим сопротивлением. В результате снижается время контакта потока воздуха с поглотителем и падает эффективность очистки. В толще фильтрующей массы не должно образовываться более плотных зон или комков материала, что возможно при использовании компоста, так как при этом снижается удельная площадь поверхности фильтрующего слоя. В материале не должно возникать температурных градиентов, а также не должно происходить резких изменений рН среды. Поэтому температурный режим в биофильтре поддерживается постоянным. Для этого воздух, подаваемый в биофильтр, подогревается, установка в целом термостатируется.

Принцип функционирования биоскрубберов отличается тем, что процесс очистки воздуха реализуется в две стадии в двух различных установках. На первом этапе в абсорбере токсические вещества, находящиеся в воздухе, а также кислород, растворяется в воде. В результате воздух выходит очищенным, а загрязненная вода далее следует на очистку. Применяют различные типы абсорберов(барботажные, насадочные, распылительные, форсуночные и т.д.). Цель конструкционных усовершенствований заключается в увеличении площади поверхности раздела фаз, газовой и жидкости. Это определяет эффективность абсорбции. На второй стадии загрязненная вода поступает в аэротенк, где она регенерируется. Очищение воды в аэротенке происходит по обычной схеме с участием кислорода. В ходе очистки сложные органические вещества окисляются микроорганизмами, формирующими активный ил, до конечных продуктов с образованием биомассы.

Биореактор с омываемым слоем. Рабочим телом этой биосистемы являются иммобилизованные микроорганизмы. Биослой реактора представляет собой гранулы с иммобилизованными микробными клетками. Этот слой омывается водой, содержащей необходимые для развития клеток минеральные вещества. Загрязненный воздух проходит через него, при этом вещества, подлежащие деструкции, диффундируют в водную пленку, покрывающую частицы биокатализатора, и далее окисляются микроорганизмами. Скорость деструкции может лимитироваться скоростью диффузии веществ из газовой фазы в жидкую, а также скоростью протекания реакций в микробных клетках. Скорость диффузии, в свою очередь, зависит от природы токсических веществ и их концентраций. Стационарный режим биореактора с омываемым слоем после его запуска наступает через 5 – 10 дней. При использовании заранее адаптированных к очищаемым веществам микроорганизмов этот срок может быть сокращен до нескольких часов. Периодически, обычно раз в несколько месяцев, биослой очищают от избытка биомассы и наполняют свежими гранулами.

Основные требования, предъявляемые к установкам биологической очистки газов, заключаются в простоте и эксплуатационной надежности конструкции, высокой удельной производительности и высокой степени очистки. Удельная производительность установки измеряется отношением объема воздуха, прошедшего через нее за 1 час, к общему объему установки.

 








Дата добавления: 2017-03-29; просмотров: 2813;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.