И особенности архитектуры
Первой целью при разработке этой системы было стремление сохранить простоту и обойтись минимальным количеством функций. Все реальные сложности оставлялись пользовательским программам.
Второй целью была общность. Одни и те же методы и механизмы должны были использоваться во многих случаях:
- обращение к файлам, устройствам ввода-вывода и буферам межпроцессных сообщений выполняются с помощью одних и тех же примитивов;
- одни и те же механизмы именования, присвоения альтернативных имен и защиты от несанкционированного доступа применяются и к файлам с данными, и к каталогам, и к устройствам;
- одни и те же механизмы работают в отношении программно и аппаратно инициируемых прерываний.
Третья цель заключалась в том, чтобы сложные задачи можно было решать, комбинируя существующие небольшие программы, а не разрабатывая их заново.
Наконец, четвертая цель состояла в создании мультитерминальной операционной системы с эффективными механизмами разделения не только процессорного времени, но и всех остальных ресурсов. В мультитерминальной операционной системе на одно из первых мест по значимости выходят вопросы защиты одних вычис-
' Создателями системы UNIX считаются Кен Томпсон и Деннис Ритчи. В своей операционной системе Томпсон и Ритчи учли опыт работы над проектом сложной мультизадачной операционной системы с разделением времени, которая имела название MULTICS (MULTiplexed Information and Computing System). Название новой системы UNIX произошло от аббревиатуры UNICS (Uniplexed Information and Computing System).
Семейство операционных систем UNIX____________________________________ 313
лительных процессов от вмешательства других вычислительных процессов. Причем для реализации третьей цели необходимо было создать механизмы полноценного обмена данными между программными модулями, из которых предполагалось составлять конечные программы.
Операционная система UNIX обладает простым, но очень мощным командным языком и независимой от устройств файловой системой. Важным, хотя и простым с позиций реализации такой возможности, является тот факт, что система UNIX предоставляет пользователям средства направления выхода одной программы непосредственно на вход другой. В результате достигается четвертая цель — большие программные системы можно создавать путем композиции имеющихся небольших программ, а не путем написания новых, что в большинстве случаев упрощает задачу. UNIX-системы существуют уже 30 лет, и к настоящему времени имеется чрезвычайно большой набор легко переносимых из системы в систему отлично отлаженных и проверенных временем приложений.
В число системных и прикладных программ, поставляемых с UNIX-системами, входят редакторы текстов, программируемые интерпретаторы командного языка, компиляторы с нескольких популярных языков программирования, включая С, C++, ассемблер, PERL, FORTRAN и многие другие, компоновщики (редакторы межпрограммных связей), отладчики, многочисленные библиотеки системных и пользовательских программ, средства сортировки и ведения баз данных, многочисленные административные и обслуживающие программы. Для абсолютного большинства всех этих программ имеется документация, в том числе исходные тексты программ (как правило, хорошо комментированные). Кроме того, описания и документация по большей части доступны пользователям в интерактивном режиме. Используется иерархическая файловая система с полной защитой, работа со съемными томами, обеспечивается независимость от устройств.
Центральной частью UNIX-систем является ядро (kernel). Оно состоит из большого количества модулей и с точки зрения архитектуры считается монолитным. Однако в ядре всегда можно выделить три основные подсистемы: управления процессами, управления файлами, управления операциями ввода-вывода между центральной частью и периферийными устройствами. Подсистема управления процессами организует выполнение и диспетчеризацию процессов, их синхронизацию и разнообразное межпроцессное взаимодействие. Важнейшая функция подсистемы управления процессами — это распределение оперативной памяти и (для современных систем) организация виртуальной памяти. Подсистема управления файлами тесно связана и с подсистемой управления процессами, и с драйверами. Ядро может быть перекомпилировано с учетом конкретного состава устройств компьютера и решаемых задач. Не все драйверы могут быть включены в состав ядра, часть из них может вызываться из ядра. Более того, очень большое количество системных функций выполняется системными программными модулями, не входящими непосредственно в ядро, но вызываемых из ядра. Основные системные функции, которые должно выполнять ядро совместно с остальными системными модулями, строго стандартизированы. За счет этого во многом достигается переносимость кода между разными версиями UNIX и абсолютно различным аппаратным обеспечением.
314________________ Глава 10. Краткий обзор современных операционных систем
Основные понятия
Одним из достоинств ОС UNIX является то, что система базируется на небольшом числе понятий; рассмотрим их вкратце. Здесь необходимо отметить, что настоящая книга не претендует на полноценное изложение основ работы и детальное описание архитектуры системы UNIX (или Linux). На эту тему имеется достаточное количество специальной литературы, например отличная монография [39] или такие замечательные книги, как [23,43]. Тем не менее, исходя из имеющегося опыта преподавания предметов, относящихся к операционным системам и системному программному обеспечению, считаю полезным изложить здесь минимальный набор основных понятий, который часто помогает студентам «погрузиться в мир UNIX», отличающийся от привычного всем окружения Windows.
Виртуальная машина
Система UNIX многопользовательская. Каждому пользователю после регистрации (входа в систему) предоставляется виртуальный компьютер, в котором есть все необходимые ресурсы: процессор (процессорное время выделяется на основе круговой, или карусельной, диспетчеризации и с использованием динамических приоритетов, что позволяет обеспечить равенство в обслуживании), оперативная память, устройства, файлы. Текущее состояние такого виртуального компьютера, предоставляемого пользователю, называется образом. Можно сказать, что процесс — это выполнение образа. Образ процесса состоит:
- из образа памяти;
- значений общих регистров процессора;
- состояния открытых файлов;
- текущего каталога файлов;
- другой информации.
Образ процесса во время выполнения процесса размещается в основной памяти. В старых версиях UNIX образ можно было «сбросить» на диск, если какому-либо более приоритетному процессу требовалось место в основной памяти. Напомним, что такое замещение процессов называется свопингом (swapping). В современных реализациях, поддерживающих, как правило, страничный механизм виртуальной памяти, прежде всего выгружаются неиспользуемые страницы, а не целиком образ. В частности, в системах Linux свопинг образов не применяется, но создается специальный1 раздел на магнитном диске для файла подкачки (swap-file), где размещаются виртуальные страницы выполняющихся процессов, для которых не хватает места в оперативной памяти. Таким образом, замещаются не процессы, а их отдельные страницы.
Образ памяти делится на три логических сегмента:
- сегмент реентерабельных процедур (начинается с нулевого адреса в виртуальном адресном пространстве процесса);
1 Сигнатура этого раздела обозначается как 082h.
Семейство операционных систем UNIX___________________________________ 315
- сегмент данных (располагается следом за сегментом процедур и может расти в сторону больших адресов);
- сегмент стека (начинается со старшего адреса и растет в сторону младших адресов по мере занесения в него информации при вызовах подпрограмм и при прерываниях).
В современных версиях UNIX-систем все виртуальное адресное пространство каждого образа отображается на реальную физическую память компьютера. Используется страничный механизм организации виртуальной памяти. И следует различать замещение процессов и подкачку страниц, хотя в обоих случаях используется термин swapping.
Пользователь
Мы уже отмечали, что с самого начала операционная система UNIX замышлялась как интерактивная многопользовательская система. Другими словами, UNIX предназначена для мультитерминальной работы. Чтобы начать работать, пользователь должен «войти» в систему, введя со свободного терминала свое учетное, или входное, имя (account name, или login) и пароль (password). Человек, зарегистрированный в учетных файлах системы и, следовательно, имеющий учетное имя, называется зарегистрированным пользователем системы. Регистрацию новых пользователей обычно выполняет администратор системы. Пользователь не может изменить свое учетное имя, но может установить и/или изменить свой пароль. Пароли хранятся в отдельном файле в закодированном виде.
Ядро операционной системы UNIX идентифицирует каждого пользователя по его идентификатору (User Identifier, UID), уникальному целому значению, присваиваемому пользователю при регистрации в системе. Кроме того, каждый пользователь относится к некоторой группе пользователей, которая также идентифицируется некоторым целым значением (Group Identifier, GID). Значения UID и GID для каждого зарегистрированного пользователя сохраняются в учетных файлах системы и приписываются процессу, в котором выполняется командный интерпретатор, запущенный при входе пользователя в систему. Эти значения наследуются каждым новым процессом, запущенным от имени данного пользователя, и используются ядром системы для контроля правомочности доступа к файлам, выполнения программ и т. д.
Все пользователи операционной системы UNIX явно или неявно работают с файлами. Файловая система операционной системы UNIX имеет древовидную структуру [39]. Промежуточными узлами дерева являются каталоги со ссылками на другие каталоги или файлы, а листья дерева соответствуют файлам или пустым каталогам. Каждому зарегистрированному пользователю соответствует некоторый каталог файловой системы, который называется домашним (home) каталогом пользователя. При входе в систему пользователь получает неограниченный доступ к своему домашнему каталогу и всем каталогам и файлам, содержащимся в нем. Пользователь может создавать, удалять и модифицировать каталоги и файлы, содержащиеся в домашнем каталоге. Потенциально возможен доступ и ко всем другим файлам, однако он может быть ограничен, если пользователь не имеет достаточных привилегий.
316________________ Глава 10. Краткий обзор современных операционных систем
Суперпользователь
Очевидно, что администратор системы, который тоже является зарегистрированным пользователем, чтобы управлять всей системой, должен обладать существенно большими, чем обычные пользователи, привилегиями. В операционных системах UNIX эта задача решается путем выделения единственного нулевого значения UID. Пользователь с таким значением UID называется суперпользователем (su-peruser) и обозначается словом root (корень). Он имеет неограниченные права на доступ к любому файлу и на выполнение любой программы. Кроме того, такой пользователь имеет возможность полного контроля над системой. Он может остановить ее и даже разрушить. По этой причине не рекомендуется работать под этой учетной записью. Администратор должен создать себе обычную учетную запись простого пользователя, а для выполнения действий, связанных с административными полномочиями, рекомендуется использовать команду su. Команда su запрашивает у пользователя пароль суперпользователя, и, если он указан правильно, операционная система переводит сеанс пользователя в режим работы суперпользователя. После выполнения необходимых действий, требующих привилегий суперпользователя, следует выполнить команду exit, которая и вернет администратору статус простого пользователя.
Еще одним важным отличием суперпользователя от обычного пользователя операционной системы UNIX является то, что на суперпользователя не распространяются ограничения на используемые ресурсы. Для обычных пользователей устанавливаются такие ограничения, как максимальный размер файла, максимальное число сегментов разделяемой памяти, максимально допустимое пространство на диске и т. д. Суперпользователь может изменять эти ограничения для других пользователей, но на него они не действуют.
Дата добавления: 2016-09-20; просмотров: 535;