Методы измерений: непосредственной оценки, сравнения, дифференциальный.
Все измерения могут производиться различными методами. Различают следующие основные методы измерений: метод непосредственной оценки и методы сравнения cмерой [7] .
2.2.1. Метод непосредственной оценки характеризуется тем, что значение измеряемой величины определяется непосредственно по отсчетному устройству измерительного прибора, заранее градуированного в единицах измеряемой величины. Этот метод является наиболее простым и поэтому широко применяется при измерении различных величин, например: измерение веса тела на пружинных весах, силы электрического тока стрелочным амперметром, разности фаз цифровым фазометром и т.д.
Функциональная схема измерения методом непосредственной оценки приведена на рис. 2.3.
Приборы непосредственной оценки всегда содержат измерительный преобразователь, который преобразует измеряемую величину в другую, доступную для сравнения наблюдателем или автоматическим устройством. Так, в стрелочных приборах происходит преобразование измеряемой величины в угол поворота подвижной части, который отмечается стрелкой. По положению стрелки, т.е. сравнением угла поворота с делениями на шкале находится значение измеряемой величины. Мерой в приборах непосредственной оценки служат деления шкалы отсчетного устройства. Они поставлены не произвольно, а на основании градуировки прибора. Градуировка прибора непосредственной оценки состоит в том, что на его вход от меры подается величина заданного размера и отмечается показание прибора. Этому показанию затем присваивается значение известной величины. Таким образом, деления шкалы отсчетного устройства являются как бы заменителем («отпечатком») значения реальной физической величины и поэтому могут быть использованы непосредственно для нахождения значений измеряемых прибором величин. Следовательно, все приборы непосредственной оценки фактически реализуют принцип сравнения с физическими величинами. Но это сравнение разновременное и осуществляется опосредованно, с помощью промежуточного средства – делений шкалы отсчетного устройства.
2.2.2. Методы сравнения с мерой – методы измерений, в которых известную величину сравнивают с величиной, воспроизводимой мерой. Эти методы по сравнению с методом непосредственной оценки более точны, но несколько сложны. Группа методов сравнения с мерой включает в себя следующие методы: противопоставления, нулевой, дифференциальный, совпадения и замещения.
Определяющим признаком методов сравнения является то, что в процессе каждого измерительного эксперимента происходит сравнение двух однородных независимых друг от друга величин - известной (воспроизводимой мерой) и измеряемой. При измерениях методами сравнения используются реальные физические меры, а не их «отпечатки».
Сравнение может быть одновременным, когда мера и измеряемая величина воздействуют на измерительный прибор одновременно, и разновременным, когда воздействие измеряемой величины и меры на измерительный прибор разнесено во времени. Кроме того, сравнение может быть непосредственным и опосредованным. В первом случае измеряемая величина и мера непосредственно воздействуют на устройство сравнения, а во втором – через другие величины, однозначно связанные с известной и измеряемой величинами.
Одновременное сравнение осуществляется обычно методами противопоставления, нулевым,дифференциальным и совпадения, а разновременное - методом замещения
Дифференциальный метод представляет собой метод сравнения с мерой, в котором на измерительный прибор (обязательно прибор сравнения) воздействует разность измеряемой величины и известной величины, воспроизводимой мерой, причем эта разность не доводится до нуля, а измеряется измерительным прибором прямого действия.
На рис. 2.6 показана функциональная схема дифференциального метода.
Здесь мера имеет постоянное значение Х0, разность измеряемой величины Х и меры Х0, т.е. e = Х - Х0, не равна нулю и измеряется измерительным прибором. Результат измерения находятся как
Y = X0 + e .
То обстоятельство, что здесь измерительный прибор измеряет не всю величину Х, а только её часть e, позволяет уменьшить влияние на результат измерения погрешности измерительного прибора, причем влияние погрешности измерительного прибора тем меньше, чем меньше разность e .
Действительно, при измерении напряжения U = 97 В вольтметром непосредственной оценки с пределом измерения 100 В и допущенной относительной погрешности измерения этого напряжения 1 % (0,01) мы получаем абсолютную погрешность измерения D1 = 97×0,01 = 0,97 » 1 В. Если же будем измерять это напряжение дифференциальным методом с использованием образцового источника напряжения U0 = 100 В, то разность напряжений U – U0 = (97 - 100)В = - 3 В мы можем измерить вольтметром с пределом измерения всего 3 В. Пусть относительная погрешность измерения этого напряжения будет также равна 1 % . Это даёт абсолютную погрешность измерения напряжения 3 В: D2 = 3×0,01 = 0,03 В . Если эту погрешность привести к измеряемому напряжению U , мы получим относительную погрешность измерения напряжения: D2/U = 0,03/97 » 0,0003 (0,03 %), т.е. приблизительно в 30 раз меньше, чем при измерении напряжения U методом непосредственной оценки. Это увеличение точности измерения произошло потому, что в первом случае прибором была измерена почти вся величина с относительной погрешностью в 1 % , а во втором случае измеряется не вся величина, а только её 1/30 часть.
В этих расчетах не учитывалась погрешность меры, которая полностью входит в результат измерения. Следовательно, при малых разностных величинах e точность измерения дифференциальным методом приближается к точности измерения нулевым методом и определяется лишь погрешностью меры. Кроме того, дифференциальный метод не требует меры переменной величины.
В приведенном выше примере измерения напряжения дифференциальным методом использовалось непосредственное сравнение.
Другим примером дифференциального метода измерения может служить определение отклонения сопротивления резистора от номинала неуравновешенным (процентным) мостом (здесь реализуется опосредованное сравнение).
Дата добавления: 2016-05-11; просмотров: 4047;