Интерференционный светофильтр
Явление интерференции широко используется в оптической технике, в частности, для изготовления интерференционных светофильтров. Интерференционный светофильтр состоит из нескольких последовательно расположенных тончайших непоглощающих слоев из диэлектрических материалов — окислов , , ; фторидов , , ; сульфидов , и других соединений. При прохождении белого света через такую систему с многочисленными границами раздела свет многократно переотражается. В результате интерференции отраженных лучей с проходящими лучами (отраженные и проходящие лучи когерентны) часть светового потока ослабляется лишь незначительно, а часть—в 10 — 10 раз.
Светофильтры используются в фотометрах в качестве монохроматоров.
Дифракция света — это отклонение света от прямолинейного распространения, когда свет огибает контур непрозрачных тел и, следовательно, проникает в область геометрической тени. Если на щель падает световая волна, то, фокусируя линзой свет, прошедший через щель, можно наблюдать чередование максимумов и минимумов освещенности.
Если свет падает не на одну щель, а на ряд параллельных щелей (решетку), то пучки, испытав дифракцию на каждой щели, интерферируют между собой.
Простейшая дифракционная решетка состоит из прозрачных участков (щелей), разделенных непрозрачными промежутками. На решетку направляется параллельный пучок света. Наблюдение ведется на непрозрачном экране в фокальной плоскости линзы, установленной за решеткой.
В каждой точке Р на экране в фокальной плоскости линзы соберутся лучи, которые до линзы были параллельны между собой и отклонились на решетке под определенным углом θ. Для того, чтобы в точке Р наблюдался интерференционный максимум, разность хода ∆ между волнами, испущенными соседними щелями, должна быть равна целому числу длин волн:
,
где d — период решетки, m — целое число, которое называется порядком дифракционного максимума. В тех точках фокальной плоскости линзы, для которых это условие выполнено, располагаются главные максимумы дифракционной картины.
Рис. 6.21. Дифракция света на решетке.
Решетка способна разлагать излучение в спектр, то есть она является спектральным прибором — составной частью монохроматоров (устройств для выделения монохроматического света). Если на решетку падает немонохроматическое излучение, то в каждом порядке дифракции (то есть при каждом значении m) возникает спектр исследуемого |излучения. Одной из важнейших характеристик дифракционной решетки является ее разрешающая способность, характеризующая возможность разделения с помощью данной решетки двух близких спектральных линий с длинами волн и . Спектральной разрешающей способностью R называется отношение длины волны к минимальному возможному значению . Разрешение дифракционной решетки зависит только от порядка спектра m и от числа периодов решетки N.
Поляризацией света называется выделение из пучка естественной света лучей, поляризованных в определенной плоскости. В источниках света элементарные процессы излучения света атомами происходят независимым образом, поэтому в обычном свете оси электромагнитных волн ориентированы хаотично, и свет, испускаемый обычны ми источниками (солнечный свет, излучение ламп накаливания и т. п.) неполяризован. Неполяризованный свет называют также естественным светом.
Вещества, способные изменять (вращать) плоскость поляризации света, являются оптически активными веществами; вещества, не способные изменять плоскость поляризации света, являются оптически неактивными. Поляриметрический метод анализа основан на измерении угла вращения плоскости поляризации луча света, прошедшего через оптически активную среду, которая помещается между поляризатором и анализатором.
Глюкоза имеет ассиметричные атомы углерода, связанные с разными группировками, поэтому обладают способностью вращать плоскость поляризованного луча. На этом основано определение глюкозы в моче с помощью поляриметра. Угол вращения плоскости поляризации зависит от оптической толщины раствора и концентрации глюкозы в растворе.
Поляриметр
Основной частью любого прибора для поляриметрического анализа является источник поляризованных лучей (поляризатор) и измеритель угла поляризации (анализатор).
На рис. 6.28. приведена схема простейшего поляриметра.
Рис. 6.28. Схема простейшего поляриметра.
1 — поляризатор; 2 — пластинка бикварца; 3 — кювета с раствором; 4 — анализатор.
При использовании простейшего поляриметра анализатор настраивают на «темноту», вращая его вокруг продольной оси. Затем вносят в прибор кювету с исследуемой жидкостью. При этом наблюдается просветление поля окуляра вследствие вращения плоскости поляризации раствором. Поворачивая анализатор, добиваются нового потемнения поля, причем угол поворота анализатора соответствует углу вращения раствором плоскости поляризации. Для более точного определения момента затемнения поля окуляра применяют дополнительную пластинку 2, состоящую из двух пластинок левовращающего и правовращающего кварца (так называемая пластинка бикварца).
При малейшем повороте анализатора обе половинки бикварца меняют свою окраску: одна становится синей, а другая — красной. Таким образом фиксируется малейший поворот анализатора.
Дата добавления: 2016-08-08; просмотров: 1352;