Качество электромагнитных переходных процессов. Уровни токов КЗ.

Ответ:Основными источниками электроснабжения промышленных предприятий являются ЭЭС. Тенденция увеличения числа и мощности источников электрической энергии в ЭЭС, приближение источников питания к потребителям, увеличение числа и мощности синхронных и асинхронных двигателей в узлах нагрузки означает одновременно повышение уровней мощностей и токов КЗ на шинах понижающих подстанций и в распределительных электрических сетях ЭЭС. Это обуславливает предъявление повышенных требований в отношении функционирования коммутационной аппаратуры, релейной защиты, системной автоматики, а также электродинамической и термической стойкости элементов ЭЭС и коммутационной способности электрических аппаратов. В последние годы стали весьма актуальными вопросы воздействия токов КЗ не только на жесткие шины, кабели и электрические аппараты, но и на генераторы, силовые трансформаторы, а также гибкие проводники электроустановок. Рост уровней токов КЗ является одной из основных причин снижения эксплуатационной надежности силовых трансформаторов. Так, в США аварийность силовых трансформаторов напряжением 34,5–138 кВ и мощностью до 50 МВА из-за недостаточной электродинамической стойкости к сквозным токам КЗ за один год возросла с 68 до 180 отказов. Подобные случаи наблюдались в энергосистемах ряда других стран. В связи с этим Международная электротехническая комиссия (МЭК) в стандарте на трансформаторы практически в два раза повысила требования к электродинамической стойкости трансформаторов. Анализ электромагнитных переходных процессов с оценкой их качества необходим для проектирования и правильной эксплуатации ЭЭС. Качество переходных процессов, с точки зрения согласования с требованиями, предъявляемыми к ЭЭС и их элементам, характеризуется качественными и количественными показателями. Показатели качества электромагнитных переходных процессов, возникающих при переходе СЭС из нормального режима работы в аварийный, оценивают по следующим их свойствам, характеристикам и последствиям: 1. По длительности переходного процесса. Длительность переходного процесса – это интервал времени, в течение которого СЭС переходит из одного установившегося состояния работы в другое установившееся состояние. Время существования аварийного режима при переходных процессах, возникающих вследствие внезапных нарушений нормального режима, обычно стремятся сократить, оценивая расчетную продолжительность аварийного режима. Этот интервал времени слагается из минимального времени действия средств релейной защиты tр.з и собственного времени отключения коммутационной аппаратуры: 2. По характеру переходного процесса. Характер переходного процесса оценивается по изменению тока во времени, который зависит от мощности источников электрической энергии, параметров электрических сетей, наличия на генераторах средств АРВ, наличия в электрических сетях устройств АПВ. Количественными оценками характера переходного процесса являются коэффициент затухания периодической составляющей тока КЗ

и коэффициент затухания апериодической составляющей тока КЗ 3. По опасности последствий переходных процессовдля оборудования ЭЭС, которые оцениваются следующими показателями изменения тока КЗ: - электродинамической стойкостью элемента ЭЭС (проверяется

по ударному току при трехфазном КЗ); - термической стойкостью (оценивается по наибольшему тепловому импульсу тока при трехфазном или двухфазном КЗ). 4. По существенности влияния параметров аварийного переходного процесса на нормальные режимы работы ЭЭС и ее элементов. Для СЭС предприятий оценка этого влияния отражается в зависимостях показателей качества электрической энергии у электроприемников со сложным режимом потребления энергии от мощности КЗ. 5. По стоимости дополнительных мероприятийдля улучшения характеристик переходного процесса в СЭС. Для СЭС крупных предприятий токи КЗ достигают на приемных пунктах электрической энергии таких значений, что без их ограничения обойтись нельзя. Решение и осуществление этой задачи требуют дополнительных капитальных вложений в СЭС. Таким образом, показатели качества электромагнитных переходных процессов по-разному характеризуют условия функционирования СЭС и электроприемников. В основе количественной оценки всех показателей лежат токи и мощности КЗ. С точки зрения снижения стоимости элементов СЭС и облегчения условий их работы желательно уменьшение уровней тока и мощности КЗ, а с точки зрения обеспечения качества электрической энергии у электроприемников, наоборот, необходим их высокий уровень. Это и определяет задачу поиска компромиссного выбора показателей качества переходных процессов. С целью уменьшения воздействия токов КЗ на электрооборудование предложены и используются различные методы и средства ограничения токов КЗ. Учитывая специфику развития ЭЭС, вопросы устойчивости и надежности работы ЭЭС, а также технико-экономические характеристики, в настоящее время разрабатываются и исследуются принципиально новые средства токоограничения, позволяющие ограничить не только значение тока КЗ, но и продолжительность КЗ. В общем случае решение указанной задачи возможно следующими путями: - повышением быстродействия коммутационной аппаратуры; - созданием и использованием новых сверхбыстродействующих коммутационных аппаратов, способных безынерционно, т. е. в течение первого полупериода, ограничить и отключить ток КЗ; - использованием безынерционных и инерционных токоограничивающих устройств (ТОУ). Условия протекания, ограничения и отключения тока КЗ показаны на рис. 10.1. При использовании в сети четырехпериодных выключателей отключение тока КЗ в зависимости от быстродействия релейнойзащиты происходит в моменты А или А'. Внедрение двухпериодных выключателей позволяет отключить ток КЗ в моменты Б или Б'.

Использование синхронизированных или тиристорных выключателей с естественной коммутацией позволяет отключить ток КЗ в момент В, т. е. при первом переходе тока через нуль. Как видно, переход от четырех- к двухпериодным, а затем и к синхронизированным выключателям позволяет снизить термическое действие тока КЗ на электрооборудование, но не ограничивает максимальное электродинамическое воздействие, определяемое ударным током, который в указанных случаях не ограничивается. Электродинамическое воздействие тока КЗ можно снизить путем использования токоограничивающих коммутационных аппаратов. Таковыми могут быть, например, тиристорные выключатели с принудительной коммутацией, ограничители ударного тока взрывного действия и токоограничивающие предохранители. Использование указанных аппаратов позволяет ограничить, а затем отключить ток КЗ в момент Г (кривая 3, рис. 10.1). Термическое и электродинамическое воздействия тока КЗ можно снизить путем использования таких безынерционных токоограничивающих устройств (БТОУ), как резонансные токоограничивающие устройства (кривая 2). В ряде случаев для уменьшения термического воздействия тока КЗ и облегчения условий работы коммутационной аппаратуры могут быть использованы также инерционные токоограничивающие устройства, например, устройства автоматического деления сети илиустройства, состоящие из реактора, нормально зашунтированного выключателем. Очевидно, что наибольшее ограничение тока КЗ достигается при использовании безынерционных токоограничивающих коммутационных устройств, однако такое решение задачи в настоящее время сдерживается либо отсутствием указанных устройств с необходимыми параметрами и эксплуатационными характеристиками, либо их высокой стоимостью. Требуют разработки, освоения и снижения стоимостных показателей синхронизированные выключатели, ТОУ со сверхпроводниками и безынерционные токоограничивающие устройства.








Дата добавления: 2016-04-23; просмотров: 1170;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.006 сек.