ОСНОВНЫЕ ЭТАПЫ РАЗВИТИЯ ИНФОРМАТИКИ И ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ.

История создания вычислительной техники уходит в глубь веков. В своем развитии она прошла три основных этапа: « механический (до 90-х гг. XIX в.);

• электромеханический (до 40-х гг. XX в.);

• электронный (с 40-х гг. XX в.).

Рассмотрим основные моменты каждого этапа.

Более трех тысяч лет в Средиземноморье было распро­странено простое приспособление для счета (абак): доска, разделенная на полосы, где перемещались камешки или кости. Российский вариант абака представлял собой сче­ты с костяшками. В Древнем Риме абак назывался calculi. Абак позволял лишь запоминать результат, а все арифме­тические действия должен был выполнять человек.

Первая механическая машина, выполняющая арифме­тические операции, была построена немецким ученым Вильгельмом Шиккардом в 1623 г.

Одной из наиболее известных суммирующих машин до середины XVII в. была «Паскалина», созданная в 1642 г. Французом Блезом Паскалем (1623-1662). Известны шес­ти- и восьмиразрядные машины Паскаля, которые могли суммировать и вычитать десятичные числа.

Позже, в 1673 г., другой немецкий ученый-математик Вильгельм Лейбниц (1646-1716) расширил возможности машины Паскаля, добавив операции умножения, деления и извлечения квадратного корня и впервые использовав двоичную систему счисления.

Завершающий шаг в эволюции цифровых вычисли­тельных устройств (механического типа) сделал английский ученый Чарльз Беббидж (1791-1871).Аналитическая , машина (так назвал ее Беббидж), проект которой он разра­ботал в 1834 г., явилась механическим прототипом по­явившихся спустя столетие электронных вычислительных машин (ЭВМ). В ней предполагалось иметь те же, что и в ЭВМ, пять основных устройств: арифметическое, памяти, управления, ввода, вывода. Программа выполнения вы­числений записывалась на перфокартах (пробивками), на них же записывались исходные данные и результаты вы­числений. Автоматическое выполнение программы вычис­лений обеспечивалось устройством управления. Время сло­жения двух 50-разрядных десятичных чисел составляло, по расчетам ученого, 1 секунду, умножения — 1 минуту. Однако Беббидж и его аналитическая машина остались не понятыми современниками.

Следует отметить, что в это время параллельно с разви­тием технических устройств для вычислений начинает развиваться и программирование вычислений. Дочь Бай­рона Ада Августа Лавлейс (1815-1852) по праву считается первым программистом. Она разрабатывала программы для машины Беббиджа, которые во многом оказались схо­жими с программами, составленными впоследствии для

первых ЭВМ.

В истории развития вычислительной техники трудно переоценить заслугу выдающегося англичанина Джорджа Буля (1815-1864), разработавшего еще в XIX в, алгебру логики (алгебру Буля), ставшую через сто лет математиче­ской основой для проектирования схем ЭВМ, использую­щих двоичную систему счисления.

Венцом механических вычислительных машин была машина Z1, разработанная в 1937 г. немецким студентом Конрадом Цузе (1910-1995), работу над которой он начал за год до получения диплома инженера. Машина Z1 была, подобно машине Беббиджа, чисто механической, но в ней была реализована двоичная система и логика, подобная булевой, представление чисел с плавающей запятой и трех-адресная система программирования.

На этом заканчивается интересная эпоха механических вычислительных машин, которая заложила основы бур­ного развития электромеханических и электронных вы­числительных машин.

В 1941 г. Конрад Цузе создал первую в мире релейную вычислительную машину с программным управлением Z3, содержащую 2000 реле устройства памяти и 600 реле счет­ного устройства. Машина считывала программу механи­чески шаг за шагом и осуществляла 15-20 вычислитель­ных операций в секунду. Период сложения у Z3 составлял 0,3 секунды.

В 40-х гг. XX в. наступило время, когда объем расчет­ных работ в развитых странах стал нарастать, как снеж­ный ком, в первую очередь в области военной техники, чему способствовала Вторая мировая война. Это послу­жило мощным толчком к развитию ЭВМ. В 1942 г. сотруд­ник технической школы при Пенсильванском универси­тете (США) физик Джон Мочли (1907-1986) отправил в военное ведомство США предложение о создании мощно­го, по тем временам, компьютера на электронных лам­пах (ЭНИАК). К работе было привлечено около 200 че­ловек, в том числе несколько десятков математиков и ин­женеров. Руководителями работы стали Джон Мочли и талантливый инженер-электронщик Проспер Эккерт (1919-1995). Напряженная работа завершилась в конце 1945 г. успешными испытаниями ЭНИАК. Впечатляю­щими были размеры ЭНИАК: 26 м в длину, 6 м в высоту, вес 35 тонн.

В 1945 г. для разработки ЭВМ в качестве консультанта был направлен выдающийся математик Джон фон Нейман (1903-1957).

В 1946 г. фон Нейманом и другими учеными Принстонского института перспективных исследований был пред­ставлен отчет «Предварительное обсуждение логического конструирования устройства», который содержал раз­вернутое и детальное описание принципов построения циф­ровых электронных вычислительных машин (ЭВМ). Из­ложенные в отчете принципы были реализованы во всех последующих ЭВМ и носили название «неймановские».

Работы по созданию ЭВМ после Второй мировой войны велись и в СССР. В 1948 г. Сергеем Алексеевичем Лебеде­вым (1902-1974) был предложен первый проект отечест­венной цифровой ЭВМ, а первые образцы ЭВМ, известные под названием МЭСМ (малая электронная счетная маши­на), появились через несколько лет. В начале 1960-х годов под руководством С. А. Лебедева создается первая большая электронная счетная машина БЭСМ-1, которая тогда была самой производительной машиной в Европе и одной из луч­ших мире.

Начиная со второй половины XX в. развитие техниче­ских средств пошло значительно быстрее. Это время при­нято делить на четыре этапа, которые имеют свои харак­терные особенности.

Первый этап — до 1955 г. За точку отсчета эры ЭВМ принимается 1946 г., когда началась эксплуатация первых опытных образцов ЭВМ. Ключевым моментом этого этапа было применение электронных ламп. Ламповые ЭВМ име­ли большие габариты и массу, потребляли много энергии и были очень дорогостоящими, что резко сужало круг поль­зователей ЭВМ, а следовательно, объем производства этих машин. Числа в ЭВМ вводились с помощью перфокарт и набора переключателей, а программа задавалась соедине­нием гнезд на специальных наборных платах.

Наиболее яркими представителями ЭВМ первого эта­па были в СССР МЭСМ (малая электронно-счетная маши­на) и ЭНИАК в США.

Также в этот период в США разрабатывается и патен­туется память на магнитных сердечниках (1951), а в СССР выпускается первая серийная ЭВМ «Стрела».

Второй этап — до 1965 г. Развитие электроники при­вело к изобретению нового полупроводникового устройст­ва— транзистора, который заменил лампы. Появление ЭВМ, построенных на транзисторах, привело к уменьше­нию их габаритов, массы, энергозатрат и стоимости, а так­же к увеличению их надежности и производительности.

Первым транзисторным компьютером стал компьютер «Традис» фирмы «Белл телефон лабораторис», построен­ный на 800 транзисторах.

В этот же период стали создавать алгоритмические язы­ки для инженерно-технических и экономических задач. Так, в 1955 г. появился «переводчик формул» FORTRAN /FPORMULA TRANSLATOR). Для экономии машинных ресур­сов (машинного времени и памяти) стали создавать опера­ционные системы (комплексы служебных программ, обес­печивающих лучшее распределение ресурсов ЭВМ при вы­полнении пользовательских задач). Первые операционные системы просто автоматизировали работу оператора ЭВМ, связанную с выполнением задания пользователя: ввод в ЭВМ программы, вызов нужного транслятора, вызов необ­ходимых библиотечных программ и т. д.

В 1957 г. фирмой IBM были разработаны дисковые за­поминающие устройства. Первый жесткий диск имел раз­мер 24 дюйма, вмещал 5 Мбайт данных и стоил более мил­лиона долларов.

Начало третьего этапа (до 1979 г.) связано с создани­ем технологии производства интегральных схем (ИС), где в одном кристалле размещалось несколько десятков ты­сяч электронных элементов. ИС позволили увеличить бы­стродействие и надежность полупроводниковых схем, а также уменьшить их габариты, потребляемую мощность и, следовательно, стоимость.

В этот период появляются простые, дешевые и надеж­ные машины — мини-ЭВМ (IBM 360 в США и ЕС 1030 в СССР).

Четвертый этап — с 1980 г. по настоящее время. За счет улучшения технологии ИС повсеместно приступают к изготовлению схем сверхбольшой степени интеграции — СБИС.

С 1982 г. фирма IBM приступила к изготовлению про­фессиональных персональных компьютеров IBM PC с опе­рационной системой MS-DOS.

В 1984 г. компании Apple и IBM выпускают ЭВМ чет­вертого поколения — персональные компьютеры Macin­tosh и PC/AT соответственно.

Развитие ЭВМ четвертого поколения продолжается до сегодняшнего дня. Стремительно возрастающие объемы информации предопределяют такое же стремительное

развитие аппаратных средств. Сейчас персональный ком­пьютер с процессором Intel четвертого поколения имеет тактовую частоту до 3000 МГц. До середины 1990-х годов фирма Intel не имела конкурентов на рынке процессоров, пока другая американская фирма AMD не приступила к выпуску процессоров для IBM-совместимых компьютеров. В следующих разделах будут рассмотрены аппаратные и программные средства современных персональных компь­ютеров (ПК) — ЭВМ четвертого поколения.

 








Дата добавления: 2016-06-13; просмотров: 1482;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.007 сек.