Устройство и принцип действия.

Ответ:Машины постоянного тока применяют в качестве электродвигателей и генераторов. Электродвигатели постоянного тока имеют хорошие регулировочные свойства, значительную перегрузочную способность и позволяют получать как жесткие, так и мягкие механические характеристики. Поэтому их широко используют для привода различных механизмов в черной металлургии (прокатные станы, кантователи, роликовые транспортеры), на транспорте (электровозы, тепловозы, электропоезда, электромобили), в грузоподъемных и землеройных устройствах (краны, шахтные подъемники, экскаваторы), на морских и речных судах, в металлообрабатывающей, бумажной, текстильной, полиграфической промышленности и др. Двигатели небольшой мощности применяют во многих системах автоматики. Конструкция двигателей постоянного тока сложнее и их стоимость выше, чем асинхронных двигателей. Однако в связи с широким применением автоматизированного электропривода и тиристорных преобразователей, позволяющих питать электродвигатели постоянного тока регулируемым напряжением от сети переменного тока, эти электродвигатели широко используют в различных отраслях народного хозяйства. Генераторы постоянного тока ранее широко использовались для питания электродвигателей постоянного тока в стационарных и передвижных установках, а также как источники Электрической энергии для заряда аккумуляторных батарей, питания электролизных и гальванических ванн, для электроснабжения различных электрических потребителей на автомобилях, самолетах, пассажирских вагонах, электровозах, тепловозах и др. Недостатком машин постоянного тока является наличие щеточноколлекторного аппарата, который требует тщательного ухода в эксплуатации и снижает надежность работы машины. Поэтому в последнее время генераторы постоянного тока в стационарных установках вытесняются полупроводниковыми преобразователями, а на транспорте — синхронными генераторами, работающими совместно с полупроводниковыми выпрямителями. Принципиальная возможность создания электродвигателя постоянного тока была впервые показана М. Фарадеемв 1821 г.; в созданном им приборе проводник, по которому пропускали постоянный ток, вращался вокруг магнита. Двигатель постоянного тока с электромагнитным возбуждением был создан в России акад. Б. С. Якоби в 1834 г., который назвал его магнитной машиной. В 1838 г. им был построен более мощный электродвигатель, который использовался для привода гребного винта речного катера. Принцип обратимости электрических машин был также впервые сформулирован русским физиком акад. Э. X. Ленцем. В дальнейшем ряд коллекторных машин постоянного тока был создан Г. Феррарисом, В. Сименсом и др. Значительное развитие теория электрических машин постоянного тока получила в трудах Д. А. Лачинова. В 1880 г. он опубликовал труд «Электромеханическая работа», в котором рассмотрел вопросы, создания вращающего момента электродвигателя, КПД электрических машин, условия питания электродвигателя от генератора и дал классификацию машин постоянного тока по способу возбуждения. В XX столетии продолжалось развитие теории и совершенствование конструкции машин постоянного тока. Большое внимание обращалось на повышение надежности этих машин путем устранения причин, вызывающих возникновения искрения под щетками (улучшения коммутации) и образования кругового огня на коллекторе. Важное значение в решении всех теоретических и практических вопросов работы машин постоянного тока имели в трудах советских ученых: А. Е. Алексеева, Д. А. Завалишина, Г. А. Люста, А. Б. Иоффе, В. Т. Касьянова, М. П. Костенко, В. С. Кулебакина, С. И. Курбатова, Л. М. Пиотровского, Е. М. Синельникова, В. А. Толвинского, К. И. Шенфера, венгерского электротехника О. В. Бенедикта и др. В настоящее время в рамках Интерэлектро разработана серия электродвигателей постоянного тока типа ПИ мощностью от 0,25 до 750 кВт, которая выпускается электропромышленностью всех стран — членов СЭВ. Эти двигатели Предназначены для регулируемых электроприводов и рассчитаны на питание от полупроводниковых преобразователей. Кроме того, электропромышленность выпускает ряд двигателей постоянного тока специального исполнения — для электротяги, экскаваторов, металлургического оборудования, шахтных подъемников, буровых установок, морских и речных судов и других приводов мощностью от нескольких сотен до нескольких тысяч кВт.

Рис. 8.1. Электромагнитная схема двухполюсной машины постоянного тока (а) и эквивалентная схема ее обмотки якоря (б): 1 — обмотка возбуждения; 2 — главные полюсы; 3 — якорь; 4 — обмотка якоря; 5 — щетки; 6 — корпус (станина).

Принцип действия: Машина постоянного тока (рис. 8.1, а) имеет обмотку возбуждения, расположенную на явно выраженных полюсах статора. По этой обмотке проходит постоянный ток Iв , который создает магнитное поле возбуждения Фв . На роторе расположена двухслойная обмотка, в которой при вращении ротора индуцируется ЭДС. Таким образом, ротор машины постоянного тока является якорем, а конструкция машины сходна с конструкцией обращенной синхронной машины. При заданном направлении вращения якоря направление ЭДС, индуцируемой в его проводниках, зависит только от того, под каким полюсом находится проводник. Поэтому во всех проводниках, расположенных под одним полюсом, направление ЭДС одинаковое и сохраняется таким независимо от частоты вращения. Иными словами, характер, отображающий направление ЭДС на рис. 8.1, а, неподвижен во времени: в проводниках, расположенных выше горизонтальной оси симметрии, которая разделяет полюсы (геометрическая нейтраль), ЭДС всегда направлена в одну сторону; в проводниках, лежащих ниже геометрической нейтрали, ЭДС направлена в противоположную сторону. При вращении якоря проводники обмотки перемещаются от одного полюса к другому; ЭДС, индуцируемая в них, изменяет знак, т. е. в каждом проводнике наводится переменная ЭДС. Однако количество проводников, находящихся под каждым полюсом, остается неизменным. При этом суммарная ЭДС, индуцируемая в проводниках, находящихся под одним полюсом, также неизменна по направлению и приблизительно постоянна по величине. Эта ЭДС снимается с обмотки якоря с помощью скользящего контакта, включенного между обмоткой и внешней цепью. Обмотка якоря выполняется замкнутой, симметричной (рис. 8.1,б). При отсутствии внешней нагрузки ток по обмотке не проходит, так как ЭДС, индуцируемые в различных частях обмотки, взаимно компенсируются. Если щетки, осуществляющие скользящий контакт с обмоткой якоря, расположить на геометрической нейтрали, то при отсутствии внешней нагрузки к щеткам прикладывается напряжение U, равное ЭДС Е, индуцированной в каждой из половин обмоток. Это напряжение практически неизменно, хотя и имеет некоторую переменную составляющую, обусловленную изменением положения проводников в пространстве. При большом количестве проводников пульсации напряжения весьма незначительны. При подключении к щеткам сопротивления нагрузки Rн через обмотку якоря проходит постоянный ток Iа , направление которого определяется направлением ЭДС Е. В обмотке якоря ток Iа разветвляется и проходит по двум параллельным ветвям (токи ia ). Для обеспечения надежного токосъема щетки скользят не по проводникам обмотки якоря (как это было вначале развития электромашиностроения), а по коллектору, выполняемому в виде цилиндра, который набирается из медных пластин, изолированных одна от другой. К каждой паре соседних коллекторных пластин присоединяют часть обмотки якоря, состоящую из одного или нескольких витков; эту часть называют секцией обмотки якоря. Если машина работает в генераторном режиме, то коллектор вместе со скользящими по его поверхности щетками является выпрямителем. В двигательном режиме, когда к якорю подводится питание от источника постоянного тока и он преобразует электрическую энергию в механическую, коллектор со щетками можно рассматривать как преобразователь частоты, связывающий сеть постоянного тока с обмоткой, по проводникам которой проходит переменный ток. Таким образом, главной особенностью машины постоянного тока является наличие коллектора и скользящего контакта между обмоткой якоря и внешней электрической цепью.

2)Обмотки якоря машин постоянного тока – петлевые и волновые.

Ответ:Для работы машины постоянного тока необходимо наличие двух обмоток; обмотки возбуждения и обмотки якоря. Первая, как известно, служит для создания в машине основного магнитного потока, а во второй происходит преобразование энергии. Обмотка якоря является замкнутой системой проводников, уложенных в пазах. Элементом якорной обмотки является секция, которая может быть одно- или многовитковой. Секция состоит из активных сторон и лобовых частей. При вращении якоря, в каждой из активных сторон индуцируется ЭДС, величина которой равна: то есть она зависит от магнитной индукции полюсов ВСР, длины проводника L и скорости его движения V. В реальной машине, будь она генератором или электродвигателем, в наведении ЭДС участвуют все проводники обмотки якоря. Величина суммарной ЭДС: где n — скорость вращения якоря (ротора), об/мин; Ф — магнитный поток полюсов;
Се — постоянный коэффициент, зависящий от количества витков в секции.
Обмотка якоря может быть петлевой и волновой. Петлевая обмотка, если ее изобразить в развернутом виде, имеет следующий вид: Петлевая обмотка якоря машины постоянного тока:

Расстояние между активными сторонами одной секции называется первым шагом обмотки — y1. Расстояние между началом второй секции и концом первой называется вторым шагом обмотки — у2. Расстояние между, началами секций, следующих друг за другом, называется результирующим шагом — у. Шаги обмотки определяются числом пазов. Расстояние между коллекторными пластинами, куда припаиваются начало и конец, принадлежащие одной секции, называется шагом по коллектору — ук. В петлевой обмотке ук= 1. Шаг ук определяется числом коллекторных пластин. Развернутая волновая обмотка имеет вид: Волновая обмотка якоря машины постоянного тока:

Форма волновой обмотки отлична от петлевой и, следовательно, будет иное соединение секций. Однако шаги волновой обмотки имеют общее с петлевой определение. Шаг по коллектору здесь значительно больше единицы (ук >> 1).








Дата добавления: 2016-04-23; просмотров: 1150;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.006 сек.