Этап 2. Формулировка гипотез, построение, исследование модели

Динамика изменения величины капитала определяется в нашей модели, в основном, простыми процессами производства и описывается так называемыми обобщенными коэффициентами амортизации (расхода фондов) и потока инвестиций (часть конечного продукта, используемого в единицу времени для создания основных фондов). Эти коэффициенты - относительные величины (оцениваются за единицу времени). Необходимо разработать и исследовать модель динамики основных фондов. Считаем при этом допустимость определенных гипотез, определяющих систему производства.

Пусть x(t) - величина основных фондов (капитала) в момент времени t, где 0 t N. Через промежуток времени Δt она будет равна x(t+Δt). Абсолютный прирост равен Δx=x(t+Δt)-x(t). Относительный прирост будет равен x=[x(t+Δt)-x(t)]/Δt.

Примем следующие гипотезы:

  1. социально-экономические условия производства достаточно хорошие и способствуют росту производства, а поток инвестиций задается в виде известной функции y(t);
  2. коэффициент амортизации фондов считается неизменным и равным m, и при достаточно малом значении Δt, изменение основных фондов прямо пропорционально текущей величине капитала, т.е. dx=y(t) - mx(t).

Считая Δt 0, а также учитывая определение производной, получим из предыдущего соотношения следующее математическое выражение закона изменения величины капитала - математическую модель (дифференциальное уравнение) динамики капитала:

x´(t) = y(t) - mx(t), x(0)=х0,

где х(0) - начальное значение капитала в момент времени t=0.

Эта простейшая модель не отражает важного факта: социально-экономические ресурсы производства таковы, что между выделением инвестиций и их введением и использованием в выпуске новой продукции проходит время (лаг). Учитывая это, можно записать модель в виде

x´(t) = y(t-T)-mx(t), x(0)=х0

Этой непрерывной, дифференциальной, динамической модели можно поставить в соответствие простую дискретную модель:

хi+1i +yj - mхi , x0=с, i=0, 1, 2, :, n, 0<j<n,

где n - предельное значение момента времени при моделировании.

Дискретная модель следует из непрерывной при Δt=1, при замене производной x´(t) на относительное приращение (из определения производной, это справедливо при малых значениях Δt).








Дата добавления: 2016-06-13; просмотров: 542;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.003 сек.