Аустенитные нержавеющие стали.

 

Стремление к увеличению термического к.п.д. энергетических установок с ядерными энергетическими реакторами, использующими в качестве теплоносителя легкую воду и жидкие металлы, заставило обратить внимание и решать вопрос об использовании аустенитных нержавеющих сталей в качестве оболочковых материалов. Их отрицательное свойство - высокое сечение поглощения тепловых нейтронов было воспринято как зло с которым надо мириться, т.к. коррозионная стойкость этих сталей весьма высока, их стоимость значительно ниже чем у циркония; они более технологичны, чем сплавы циркония, т.к. требуют меньших затрат наиболее простых приемов при изготовлении деталей из этих сталей.

Как и в случае с Al, исторически сложилось так, что основным конструкционным материалом была выбрана хорошо изученная и опробованная в других областях промышленности аустенитная нержавеющая сталь типа 18/8 и 18/10. Эти стали коррозионно стойки в воде до 360° С и в перегретом паре до 650° С, обладая при этом достаточно хорошими механическими характеристиками. Однако, для повышения жаропрочности требуется дополнительное легирование вольфрамом или молибденом.

Совместимость сталей этого типа с ядерным топливом достаточно хорошая. Сталь 18/10 хорошо совместима с двуокисью урана до температуры 750° С, а с металлическим ураном - до 500° С.

Стали типа 18/8 и 18/10 способны пассивироваться и это обстоятельство является весьма ценным при эксплуатации.

Однако, в зависимости от внешних и внутренних факторов на этих сталях наблюдаются несколько видов коррозии - равномерная общая, язвенная, межкристаллитная, коррозия под напряжением.

Общая коррозия идет со скоростью 0,8 - 4 мк/год в воде высокой чистоты при температуре 280 - 350° С, 5 - 10 мкм/год в водяном паре до 600° С. Скорость коррозии аустенитных хромоникелевых нержавеющих сталей зависит от скорости теплоносителя и наличия ионизирующего излучения, но остается во вполне допустимых для эксплуатации пределах.

Нарушение гомогенности структуры сталей - наличие включений, трещин, раковин может привести к язвенной или точечной коррозии. Неоднородные включения путем образования микрогальванических пар также приводят к язвенной коррозии вследствие местной депассивации металла и растравливания депассивированных участков.

О вредном действии хлор - иона уже говорилось. В присутствии хлор - иона уменьшается потенциал пробоя в пассивной области.

Местная коррозия интенсивно протекает в щелях, зазорах и любых других местах возможного упаривания воды, когда количество примесей в этих местах увеличивается.

В контакте с Al нержавеющая сталь интенсифицирует процесс анодного растворения Al вследствие образования микрогальванической пары ( в местах разрушения защитной окисной пленки) или контактной разности потенциалов. О способах борьбы с этим видом коррозии говорилось ранее. Аустенитная сталь может корродировать по границам зёрен (м.к.к.). Этот вид коррозии происходит преимущественно из-за того, что по границам зёрен выпадает карбид хрома. Это приводит к обеднению границ зёрен Cr, что уменьшает электрохимическую стойкость этих областей.

Следовательно, повышенное количество углерода нежелательно, т.к. он основной карбидообразователь, для предотвращения выпадения карбидов применяют легирование молибденом, но лучшие результаты даёт стабилизация титаном или ниобием.

Ti u Nb создают стойкие карбиды, вследствие чего не происходит обеднение границ зёрен хромом. Т.е. Ti u Nb "забирают" C на себя и не дают ему соединиться с Cr.

В то же время, азотосодержащие стали следует легировать Nb, т.к. Ti идет на образование нитридов. Кроме того в тонкостенных трубах

( толщины менее < 0,5 мм) Ti может давать карбиды, размеры которых могут быть почти соизмеримы с толщиной стенки трубы.

Ещё один способ борьбы с МКК - термообработка 1-3 часа при

t = 800 - 870° C для максимального связывания углерода в карбиды равномерно по объему зерна и выравнивания концентрации Cr за счет высокой диффузии.

Сварные швы - тоже узкое место, т.к. в пришовной зоне термического влияния происходит карбидообразование по границам зёрен и эта зона становится склонной к коррозионному растрескиванию.

МКК развивается обычно на сталях в кислых средах и при наличии кислорода ( более 0,1-:-0,3 мг/кг ). Существуют гостированные методы для проверки склонности стали к МКК: так называемые методы АМ и Б.

Метод АМ - кипячение 24 часа в смеси серной кислоты, медной стружки и медного купороса.

Затем образцы изгибают на 90° по радиусу, зависящему от толщины образца. Наличие трещин свидетельствует о склонности к МКК.

Готовые изделия проверяются анодным травлением участка поверхности (метод Б). Если при увеличении в 10 - 30 раз видна сетка протравленных границ зёрен то считают, что металл склонен к МКК. Но этот метод несколько субъективен.

Наиболее опасный вид коррозионного разрушения на аустенитных хромоникевых сплавах - коррозионное растрескивание КР.

КР появляется при наличии механических напряжений и коррозионно - агрессивной среды. На возникновение КР влияют очень многие факторы.

В первую очередь - степень пластической деформации - наклёпа, ибо растягивающие напряжения от наклепа, складываясь с действующими растягивающими напряжениями, могут усилить скачком растрескивание.

Следовательно, необходимо обеспечить полное снятие наклепа.

На КР также влияет структура стали. Так в 18 / 8 при холодной прокатке образуется феррит (в небольшой части). Объем феррита > объема аустенита, из которого образовался феррит, это приводит к возникновению в металле местных механических напряжений, способствующих КР. Следовательно, надо всеми известными способами обеспечить структурную устойчивость аустенитной нержавеющей стали.

Особо опасные стали с двухфазной структурой, у которых даже при небольшой деформации происходит выпадение феррита.

Кроме того, в некоторых сталях при определенных видах термообработки появляется магнитная a - фаза по границам зёрен в виде сплошной сетки.

С ростом содержания феррита укорачивается область пассивного состояния хромоникелевых аустенитных нержавеющих сталей. Если феррита 30 %, то сталь уже работает как хромистая, и область пассивного состояния не наступает.

Как отмечалось, огромную роль играет состав коррозионной среды, и в первую очередь наличие хлорид - ионов и кислорода.

Причем, если строго прослеживается зависимость от концентрации хлоридов, то кислородная концентрация не столь важна, но важен сам факт присутствия кислорода. Поэтому реакторная вода и подпиточная вода строго нормируются по содержанию хлорид - иона ( 0,1 - 0,5 мг/кг.). Наиболее опасными участками для КР участками являются места с переменным увлажнением.

Если вспомнить историю отечественного прямоточного котлостроения, то видно, что парогенераторы на давление 30 - 50 кг/см^2 "горели" вследствие плохой растворимости солей в паре этих давлений и выпадении их на поверхностях нагрева, т.е. с повышением концентрации Cl с накапливанием его.

Этот опыт необходимо помнить и использовать сейчас, т.к. такие ошибки повторяются и в современном проектировании энергетического оборудования.

Коррозионное растрескивание происходит и в паре, содержащем O2 и ион хлора.

В настоящее время делаются успешные попытки объяснить коррозионное растрескивание перемещением и блокированием перемещения дислокаций.

В общем виде эта теория сводится к расчету времени, в течение которого дислокация, перемещаясь от места возникновения к границе зерна, останавливается, заблокированная.

Т.е. t = L / u

где t - время, L - размер зерна, или путь дислокации до блокирования, u - скорость перемещения дислокаций.

Вся сложность в определении скорости от внутренних факторов. Точностью предпосылок и определяются успехи отдельных попыток рассчитать время устойчивой работы готового изделия.

Аустенитные нержавеющие хромоникелевые стали склонны еще к одному, пока малообъяснимому, типу разрушений - щелочной хрупкости - ухудшению механических свойств сталей в среде с повышенным содержанием щелочи.

В связи с большой величиной сечения поглощения тепловых нейтронов аустенитные нержавеющие стали предпочтительнее применять в реакторах на быстрых нейтронах.

Вообще говоря воздействие расплавов металлов на сталь весьма специфично, и не похоже не на электрохимическую и химическую коррозию.

Основную разрушающую силу в жидкокристаллических теплоносителях приобретает перенос массы. Это явление заключается в растворении отдельных компонентов, насыщении этими компонентами расплав с высокой температурой и выпадении в осадок из расплава с более низкой температурой, т.е. при перенасыщении.

Следовательно, у этого процесса 2 стороны: разрушение металла в зоне высокой температуры и сужение проходных сечений в зоне низких температур.

При увеличении скорости прокачки металла скорость растворения сталей увеличивается ( примерно в степени 0,8 ).

Для тяжелых жидких металлов характерно эррозионное действие.

Кроме того в эвтектике Pb - Bi происходит вымывание углерода из перлитной стали и науглероживание аустенитной, т.е. выравнивание концентрации углерода. Это приводит к изменению механических свойств аустенитной стали.

Этот же расплав вымывает Ni u Cr их стали типа 18 / 8, что тоже изменяет её свойства.

Сталь типа 18 / 8 весьма стойка в эвтектике Na - K . В ней при содержании кислорода 0,002 % глубина коррозионного поражения составляет

2 - 3 мкм /год. Следовательно надо бороться с содержанием кислорода, т.е. надо очищать от кислорода жидкий металл.

Кроме того, для эксплуатации в жидком металле необходимо брать стали с минимальным содержанием углерода, а сам расплав периодически очищать от него. Кроме углерода, Ni u Cr, переносится а также Fe; причем этот процесс сопровождается МКК сталей. Скорость МК поражений достигает 250 мкм/год и зависит от содержания кислорода в Na.

Резкий скачок в скорости МКК наблюдается при концентрации кислорода 0,05 %, т.к. окислы, образующиеся на поверхности могут растворяться в расплаве.

Коррозионная стойкость жаропрочных сталей, применяемых при t = 700° С может быть повышена легированием Al до 30 % ат.

Применение тугоплавких материалов при t = 800° C в общем не спасает положение, если в расплаве присутствует кислород.

Повышенная концентрация Li весьма коррозионно агрессивна к сталям и вымывает Ni; O u N "помогают" Li в этом "черном деле".

С точки зрения наличия ионизирующего излучения аустенитные хромоникеливые стали подвергаются радиационному охрупчиванию т.е. повышению прочности и понижению пластичности.

Этот вид последствий облучения весьма опасен, особенно если принять во внимание термическую науку, напряжения, вибрацию и т.д. Способствуют разрушению материала при этом виде коррозионного воздействия образование интерметаллических фаз.


<== предыдущая лекция | следующая лекция ==>
Коррозия циркония и его сплавов. | охрупчивание металлов и сплавов.




Дата добавления: 2016-06-02; просмотров: 2352;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.012 сек.