Прием цифровых сигналов в каналах с сосредоточенными по спектру и импульсными помехами
Выше помехоустойчивость приема определялась для канала с АБГШ. Однако на практике приходится учитывать и действие в канале связи других аддитивных помех, порождаемых внешними источниками, и, прежде всего тех, что относятся к классу сосредоточенных по спектру («гармонических») и импульсных.
Напомним, если на вход приемного устройства поступает большое количество слабо коррелированных помех от разных источников сравнимой мощности, то их сумма, согласно центральной предельной теореме, представляет процесс, близкий к гауссовскому. Добавляясь к флуктуационному шуму аппаратуры, он создает гауссовскую помеху, т.е. АБГШ. Однако нередко среди множества маломощных помех на вход приемника поступают отдельные мощные импульсы или сосредоточенные по спектру помехи. В таком канале, если не принимать специальных мер, прием цифровых сигналов сопровождается ухудшением помехоустойчивости и, даже, полным нарушением связи.
Все мероприятия по защите от внешних помех можно разбить на три группы.
К первой относят те, которые направлены на ослабление помех в месте их возникновения, в частности экранирования источников промышленных помех, применение искрогасящих конденсаторов, снижение уровня побочных излучений радиопередатчиков и т.п. Эти мероприятия регулируются специальными законоположениями и стандартами.
Вторая группа – это мероприятия, цель которых воспрепятствовать проникновению помех на вход демодулятора. Для этого в системах проводной связи совершенствуют конструкцию кабелей для уменьшения взаимных влияний и т.п. В радиосвязи для этого осуществляется рациональное распределение частот между отдельными службами и каналами с учетом размещения передатчиков и приемников и условий распространения радиоволн. При выполнении мероприятий первых двух групп важную роль играют международные органы, которые вырабатывают допустимые нормы и контролируют их соблюдение – секторы T и Р международного союза электросвязи ( МСЭ-Т и МСЭ-Р).
Третья группа мероприятий (является предметом рассмотрения дисциплины «Теория связи») охватывает выбор ансамбля сигналов и построение приемника с целью предупредить попадание внешних помех в схему демодулятора и минимизировать вероятность ошибки, если они все-таки проникнут в нее. Вопросы, связанные с взаимным влиянием разных систем передачи одной на другую, изучаются теорией электромагнитной совместимости.
Сосредоточенные помехи наблюдаются почти исключительно в радиоканалах. Защита демодулятора от их попадания осуществляется линейными цепями радиоприемников. Способность ослабить сосредоточенную помеху на входе демодулятора определяет избирательность радиоприемника. Частотная избирательность обеспечивается тем, что до подачи сигнала на вход демодулятора он фильтруется линейными цепями, полоса пропускания которых достаточная для того, чтобы сигнал прошел без существенных искажений, а сосредоточенные помехи, которые лежат вне полосы пропускания, при этом ослаблялись. Кроме частотной избирательности широко используют также пространственную избирательность, основанную на применении узконаправленных приемных антенн. Важно отметить, что влияние сосредоточенных помех возрастает при увеличении нелинейности входных каскадов радиоприемника, поскольку возникающие при этом комбинационные частоты (даже если помеха на входе приемника непосредственно и не попала в полосу пропускания) могут оказаться в области частот полезного сигнала. Вопросы защиты радиоприемника от сосредоточенных помех изучаются в дисциплине «Радиоприемные устройства».
Очевидно, для уменьшения вероятности попадания сосредоточенной помехи в полосу частот сигнала желательно использовать по возможности более узкополосные сигналы. Именно поэтому на протяжении многих десятилетий для передачи цифровых сигналов по радиоканалам применялись только простые узкополосные сигналы (АМ-2, ЧМ-2, ФРМ-2), элементами которых являются отрезки синусоиды. Однако за последние 40–50 лет наметился и другой подход, связанный с существенным расширением спектра сигнала усложнением его формы или использованием широкополосных сигналов (ШПС). ШПС позволяют успешно передавать сигналы в многолучевых каналах (разд. 19). Но, как это не парадоксально, применение ШПС оказалось полезным и для защиты от узкополосных сосредоточенных помех. Дело в том, что, если спектр узкополосного сигнала перекрывается мощной сосредоточенной помехой, то практически не удается избежать возникновения ошибок. Если же такая помеха окажется в полосе ШПС, то в принципе существует возможность «вырезать» ее режекторным фильтром (или другими способами) и по оставшейся части спектра ШПС восстановить переданный цифровой сигнал. Поэтому, хотя вероятность попадания сосредоточенной помехи в спектр ШПС бóльшая, чем в спектр узкополосного, вероятность ошибок, создаваемых такой помехой, при ШПС (и соответственно построенными радиоприемнике и демодуляторе) может оказаться значительно меньшей.
Для защиты от сосредоточенных помех строятся «устройства защиты от сосредоточенных помех» (рис. 20.1). Такое устройство представляет собой ряд параллельно включенных блоков и сумматор (рис. 20.1, а). Блоки содержат (рис. 20.1, б): узкополосные фильтры со смежными полосами пропускания, рассчитанными так, что вместе они пропускают без существенных искажений весь ШПС, устройства, которые анализируют напряжения на выходах каждого фильтра, и управляемые ключи, которые отключают выходы тех блоков, в которых оказываются мощные сосредоточенные помехи. Это устройство включается на входе демодулятора.
Для защиты от импульсных помех предложены разные способы, наиболее эффективные из которых основаны на амплитудном ограничении входного сигнала до его фильтрации или на мгновенном запирании приемника на время действия помехи. Известно, что, применяя ограничитель в широкополосном тракте приемника и пропуская ограниченный сигнал через узкополосный фильтр, можно при надлежащем выборе полос пропускания подавить импульсные помехи без заметного ухудшения помехоустойчивости относительно сосредоточенных и флуктуационных помех. Такая система получила название ШОУ (широкополосный фильтр, ограничитель, узкополосный фильтр) (рис. 20.2). В современных устройствах роль узкополосных фильтров выполняют согласованные фильтры демодулятора.
Пусть входной сигнал приемника подается на двусторонний амплитудный ограничитель. Если уровень ограничения U0 избран немного выше напряжения полезного сигнала, то при отсутствии импульсной помехи схема приемника остается линейной. Если же появится импульсная помеха с уровнем, бóльшим, чем U0, она будет ограничена. Таким образом, импульсная помеха длительностью tи с как угодно большой амплитудой на входе, трансформируется в импульс с площадью tи0. Амплитуда этого импульса приблизительно равняется амплитуде сигнала, а спектр его значительно отличается от спектра сигнала. Поэтому после прохождения через узкополосный (или согласованный) фильтр большая часть энергии импульсной помехи отсеивается и она не вызывает ошибок.
Однако в реальных условиях уровень U0 достигается и сосредоточенной помехой, а из-за нелинейного элемента в схеме (ограничителя) образуются комбинационные частоты сосредоточенной помехи, которые в дальнейшем тяжело отфильтровать. Включение ограничителя после фильтра, который устраняет влияние сосредоточенной помехи, неэффективна, так как на выходе такого фильтра длительность импульсной помехи возрастает, а амплитуда уменьшается.
Метод мгновенного запирания приемника на время действия импульсной помехи также не лишен недостатков. Во-первых, во время запирания и отпирания возникают переходные процессы, которые искажают сигнал; во-вторых, суммарное входное колебание (сигнал плюс сосредоточенная и флуктуационная помехи) оказывается при этом промодульованным импульсом запирания, из-за чего появляются дополнительные частотные составляющие, которые могут попасть в полосу частот сигнала.
Можно отметить частотно-временную дуальность между гармонической и импульсной помехами (спектральные характеристики сосредоточенной по спектру помехи напоминают временные характеристики импульсной, и наоборот). Это обстоятельство объясняет, почему мероприятия борьбы с импульсной и сосредоточенной помехами в приемном устройстве взаимно противоположные. Упомянутые выше ШПС можно с успехом использовать и для борьбы с импульсными помехами вследствие их различия по форме. Фильтр приемника, согласованный с таким ШПС, превратит сигнал в короткий интенсивный (в зависимости от энергии сигнала) импульс, длительность которого обратно пропорциональна полосе частот сигнала. Импульсная же помеха превращается этим фильтром в колебание малой интенсивности, которое имеет характер шума, который слабо маскирует сигнал.
В последние годы предложены схемы защиты от сосредоточенных и импульсных помех, основанные на оценивании этих помех и вычитании сигнала оценки из принятого колебания (компенсационные методы). При этом такие схемы в условиях изменения характеристик помех становятся адаптивными. Компенсационные методы могут работать, если параметры помехи изменяются довольно медленно. Эффективной мерой защиты от сосредоточенных и импульсных помех является разнесенный прием одновременно по частоте и по времени (разд. 19). Из ветвей частотного разнесения следует выбирать те, в которых меньше (или нет совсем) сосредоточенных помех, а из ветвей разнесения по времени те, где нет импульсной помехи. Довольно эффективные также методы защиты от различных помех, основанные на помехоустойчивом кодировании (модуль 4).
Контрольные вопросы
1. Объясните методы защиты от сосредоточенных помех.
2. Объясните методы защиты от импульсных помех.
Дата добавления: 2016-06-02; просмотров: 1364;