Основные задачи, решаемые способом замены плоскостей проекций

Применение способа замены плоскостей проекций для решения различных задач (позиционных и метрических) основывается на четырёх основных задач.

Задача 1. Сделать прямую l(l1,l2) общего положения прямой уровня в новой системе плоскостей проекций.

 
 

Зададим на чертеже прямую l общего положения отрезком АВ(А1В1, А2В2) в соответствии с рисунком 1.4.6.

 

Рисунок 1.4.6 – Решение первой и второй основных задач

способом замены плоскостей проекций

 

Используя возможность свободного выбора положения оси проекций, т.е. базы отсчёта, проведём эту ось через точку А2. Тогда высота точки А равна нулю. Чтобы прямая l стала линией уровня относительно новой плоскости проекций, плоскость П4 должна быть параллельна l. Перейдём от системы (П1, П2) к системе (П1, П4). Новую ось х14 надо провести параллельно l1. Для построения новой проекции прямой l проведём новые линии связи, перпендикулярные оси х14, и отметим на них проекции точек А и В: А4 на оси х14, поскольку hА=0, и В4 на высоте hВ14В412В2. Соединив найденные точки, получим новую проекцию прямой l: l4(А4В4).

Таким образом, прямая l(l1,l4) в новой системе плоскостей проекций (П1, П4) является линией уровня, поэтому отрезок А4В4 равен натуральному отрезку АВ, а угол a, образованный проекцией А4В4 с осью х14 равен натуральной величине угла наклона прямой l(АВ) к горизонтальной плоскости проекций П1.

Задача 2. Сделать прямую l общего положения в новой системе плоскостей проекций проецирующей прямой в соответствии с рисунком 1.4.6.

Для преобразования прямой l в проецирующую прямую надо сначала решить первую задачу, рассмотренную выше, затем заменить ещё одну плоскость проекций, перейдя от системы (П1, П4) к системе (П4, П5).

Новую плоскость проекций П5 выбираем перпендикулярно к плоскости проекций П4 и одновременно перпендикулярно к прямой АВ (это возможно, поскольку АВ||П4), добиваясь этим, что прямая АВ становится проецирующей

линией (АВ^П5).

На чертеже новую ось проекций надо провести перпендикулярно к А4В4 (х45^А4В4). Следовательно, линии связи А4А5 и В4В5 будут в данном случае совпадать с прямой А4В4. Откладывая на линии связи от новой оси х45 отрезок vl, равный глубине точек прямой l относительно плоскости П4, получим проекцию заданной прямой на плоскость П5 в виде точки l5ºА5ºВ5.

Задача 3. Сделать плоскость Q общего положения проецирующей плоскостью в новой системе плоскостей проекций в соответствии с рисунком 1.4.7.

Зададим на чертеже плоскость общего положения Q треугольником АВС(А1В1С1, А2В2С2). Чтобы сделать плоскость Q проецирующей, надо заменить плоскость П2 новой плоскостью П4, выбрав её перпендикулярной к Q.

Для этого проведём в плоскости Q горизонталь h(h1, h2) и новую плоскость проекций П4 выберем перпендикулярной к этой горизонтали, а, значит, перпендикулярной и к незаменяемой плоскости проекций П1. Тогда горизонталь h, а вместе с ней и данная плоскость Q, станут проецирующими относительно плоскости П4.

На комплексном чертеже проводим новую ось х14 перпендикулярно к горизонтальной проекции горизонтали: х14^h1. Для удобства старую ось выбираем проходящей через самую низкую точку С2 (при этом х12^С1С2). Строим на соответствующих новых линиях связи новые проекции точек А4, В4, С4, которые располагаются на одной прямой – новой проекции плоскости Q(Q4)

Итак, плоскость Q(АВС) стала проецирующей. Угол j, образованный проекцией плоскости А4В4С4 с осью х14 равен натуральной величине угла наклона плоскости Q к горизонтальной плоскости проекций П1.

Задача 4. Сделать плоскость Q общего положения плоскостью уровня в новой системе плоскостей проекций в соответствии с рисунком 1.4.7.

Для преобразования плоскости Q в плоскость уровня надо сначала решить третью задачу, рассмотренную выше. Затем надо перейти от системы плоскостей проекций (П1, П4) к новой системе (П4, П5), т.е. заменить плоскость П1 новой плоскостью П5, параллельной плоскости Q. Для этого на чертеже нужно провести новую ось х45, параллельную Q4 или совпадающую с ней. Выберем второй вариант. На линиях связи А4А5 и С4С5 (эти линии перпендикулярны х45) откладываем отрезки А4А514А1 и С4С514С1; точка В5 совпадает с В4. Соединив точки, получаем новую проекцию А5В5С5 плоскости АВС.

 

 
 

Рисунок 1.4.7 – Решение третьей и четвёртой основных задач

способом замены плоскостей проекций

 

Итак, плоскость АВС(А4В4С4,, А5В5С5) стала плоскостью уровня относительно плоскости П5, а проекция А5В5С5 равна натуральной величине треугольника АВС.

 








Дата добавления: 2016-06-02; просмотров: 542;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.