Внутреннее устройство элемента 2И-НЕ
До сих пор мы рассматривали логический элемент на уровне его графического обозначения, принимая его, как говорят в математике за «черный ящик»: не вдаваясь в подробности внутреннего устройства элемента, мы исследовали его реакцию на входные сигналы. Теперь настало время изучить внутреннее устройство нашего логического элемента, которое показано на рисунке 6.
Рисунок 6. Электрическая схема логического элемента 2И-НЕ.
Схема содержит четыре транзистора структуры n-p-n, три диода и пять резисторов. Между транзисторами существует непосредственная связь (без разделительных конденсаторов), что позволяет им работать с постоянными напряжениями. Выходная нагрузка микросхемы условно показана в виде резистора Rн. На самом деле это чаще всего вход или несколько входов таких же цифровых микросхем.
Первый транзистор многоэмиттерный. Именно он выполняет входную логическую операцию 2И, а следующие за ним транзисторы выполняют усиление и инвертирование сигнала. Микросхемы, выполненные по подобной схеме, называются транзисторно-транзисторной логикой, сокращенно ТТЛ.
В этой аббревиатуре отражен тот факт, что входные логические операции и последующее усиление и инвертирование выполняются транзисторными элементами схемы. Кроме ТТЛ существует еще диодно-транзисторная логика (ДТЛ), входные логические каскады которой выполнены на диодах, расположенных, конечно внутри микросхемы.
Рисунок 7.
На входах логического элемента 2И-НЕ между эмиттерами входного транзистора и общим проводом установлены диоды VD1 и VD2. Их назначение защитить вход от напряжения отрицательной полярности, которое может возникнуть в результате самоиндукции элементов монтажа при работе схемы на высоких частотах, либо просто подано по ошибке от внешних источников.
Входной транзистор VT1 включен по схеме с общей базой, а его нагрузкой служит транзистор VT2, который имеет две нагрузки. В эмиттере это резистор R3, а в коллекторе R2. Таким образом, получается фазоинвертор для выходного каскада на транзисторах VT3 и VT4, что заставляет работать их в противофазе: когда закрыт VT3, открыт VT4 и наоборот.
Предположим, что на оба входа элемента 2И-НЕ подан низкий уровень. Для этого достаточно просто соединить эти входы с общим проводом. В этом случае транзистор VT1 будет открыт, что повлечет за собой закрытие транзисторов VT2 и VT4. Транзистор же VT3 окажется в открытом состоянии и через него и диод VD3 ток течет в нагрузку – на выходе элемента состояние высокого уровня (логическая единица).
В том случае, если на оба входа подать логическую единицу транзистор VT1 закроется, что приведет к открытию транзисторов VT2 и VT4. За счет их открытия транзистор VT3 закроется и ток через нагрузку прекратится. На выходе элемента устанавливается нулевое состояние или напряжение низкого уровня.
Напряжение низкого уровня обусловлено падением напряжения на переходе коллектор – эмиттер открытого транзистора VT4 и согласно техническим условиям не превышает 0,4В.
Напряжение высокого уровня на выходе элемента меньше, чем напряжение питания на величину падения напряжения на открытом транзисторе VT3 и диоде VD3 в том случае, когда транзистор VT4 закрыт. Напряжение высокого уровня на выходе элемента зависит от нагрузки, но не должно быть менее 2,4В.
Если на входы элемента, соединенные вместе, подать очень медленно изменяющееся напряжение, меняющееся от 0…5в, то можно проследить что переход элемента из высокого уровня в низкий происходит скачкообразно. Этот переход выполняется в тот момент, когда напряжение на входах достигает уровня примерно 1,2В. Такое напряжение для 155 – й серии микросхем называется пороговым.
На этом можно считать общее знакомство с элементом 2И-НЕ законченным. В следующей части статьи мы познакомимся с устройством различных простейших устройств, таких как различные генераторы и формирователи импульсов.
Логические микросхемы. Часть 4
После знакомства в предыдущих частях статьи с микросхемой К155ЛА3 попробуем разобраться с примерами ее практического применения.
Казалось бы, что можно сделать из одной микросхемы? Конечно, ничего выдающегося. Однако попробовать собрать какой либо функциональный узел на ее основе следует попробовать. Это поможет наглядно разобраться с принципом его работы и настройки. Одним из таких узлов, достаточно часто применяющимся на практике является автоколебательный мультивибратор.
Схема мультивибратора показана на рисунке 1а. Эта схема по внешнему виду очень похожа на классическую схему мультивибратора на транзисторах. Только здесь в качестве активных элементов применены логические элементы микросхемы, включенные инверторами. Для этого входные выводы микросхемы соединены вместе. Конденсаторы С1 и С2 образуют две цепи положительной обратной связи. Одна цепь это вход элемента DD1.1 – конденсатор С1 – выход элемента DD1.2. Другая с входа элемента DD1.2 через конденсатор С2 на выход элемента DD1.1.
Благодаря этим связям схема самовозбуждается, что приводит к генерированию импульсов. Период следования импульсов зависит от номиналов конденсаторов в цепях обратной связи, а также сопротивления резисторов R1 и R2.
На рисунке 1б та же самая схема нарисована таким образом, что еще более похожа на классический вариант мультивибратора на транзисторах.
Рис. 1 Автоколебательный мультивибратор
Дата добавления: 2016-05-25; просмотров: 2795;