Скалярное произведение.

Геометрия на плоскости и в пространстве.

Целью данного раздела состоит в рассмотрении таких геометрических понятий как расстояние, площадь, объём с последующим обобщением этих понятий и их переносом на произвольные линейные пространства.

Скалярное произведение.

Определение 1.1. Скалярным произведением геометрических векторов a и b называется число, равное произведению длин этих векторов на косинус угла между ними. Скалярное произведение векторов обозначают .

Из определения следует, что длина вектора равна .

Приведём свойства скалярного произведения.

1. . Симметричность

2. Линейность

3.

В доказательстве нуждается только третье равенство. Если c=0, то равенство очевидно. Пусть . Проекция вектора b на c равна .

Из равенства и приведённой выше формулы выводим . Приравняем коэффициенты при векторе c в левой и правой частях равенства и умножим на квадрат длины вектора c, получим свойство 3.

Задание длин векторов определяет скалярное произведение. Действительно, из свойств скалярного произведения выводим равенство , которое перепишем в виде

. Таким образом, задание длин векторов равносильно заданию скалярного произведения и наоборот.

Выразим скалярное произведение через координаты перемножаемых векторов. Пусть - базис пространства векторов, и , - разложения векторов a,b по этому базису. Тогда по свойствам скалярного произведения выводим . Обозначим через матрицу Грамма от векторов , составленную из скалярных произведений этих векторов, через - координаты вектора a в базисе f. В этих обозначениях скалярное произведение можно записать с помощью матричных операций следующим образом .

Векторы называются ортогональными (перпендикулярными) если угол между ними равен . Условие ортогональности векторов равносильно равенству нулю их скалярного произведения.

Базис называется ортогональным, если базисные векторы попарно ортогональны. Матрица Грамма ортогональной системы векторов – диагональная. Выражение скалярного произведения через координаты векторов в ортогональном базисе принимает более простой вид, а именно, .

В ортогональном базисе скалярное произведение вектора a на базисный вектор равно , то есть, координаты вектора a находятся по формулам .

Ортогональный базис , в котором длина каждого базисного вектора равна 1, называется ортонормированным. В ортонормированном базисе координаты вектора x определяются по формулам , а скалярное произведение векторов равно .








Дата добавления: 2016-05-25; просмотров: 518;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.006 сек.