Скалярное произведение.
Геометрия на плоскости и в пространстве.
Целью данного раздела состоит в рассмотрении таких геометрических понятий как расстояние, площадь, объём с последующим обобщением этих понятий и их переносом на произвольные линейные пространства.
Скалярное произведение.
Определение 1.1. Скалярным произведением геометрических векторов a и b называется число, равное произведению длин этих векторов на косинус угла между ними. Скалярное произведение векторов обозначают .
Из определения следует, что длина вектора равна .
Приведём свойства скалярного произведения.
1. . Симметричность
2. Линейность
3.
В доказательстве нуждается только третье равенство. Если c=0, то равенство очевидно. Пусть . Проекция вектора b на c равна .
Из равенства и приведённой выше формулы выводим . Приравняем коэффициенты при векторе c в левой и правой частях равенства и умножим на квадрат длины вектора c, получим свойство 3.
Задание длин векторов определяет скалярное произведение. Действительно, из свойств скалярного произведения выводим равенство , которое перепишем в виде
. Таким образом, задание длин векторов равносильно заданию скалярного произведения и наоборот.
Выразим скалярное произведение через координаты перемножаемых векторов. Пусть - базис пространства векторов, и , - разложения векторов a,b по этому базису. Тогда по свойствам скалярного произведения выводим . Обозначим через матрицу Грамма от векторов , составленную из скалярных произведений этих векторов, через - координаты вектора a в базисе f. В этих обозначениях скалярное произведение можно записать с помощью матричных операций следующим образом .
Векторы называются ортогональными (перпендикулярными) если угол между ними равен . Условие ортогональности векторов равносильно равенству нулю их скалярного произведения.
Базис называется ортогональным, если базисные векторы попарно ортогональны. Матрица Грамма ортогональной системы векторов – диагональная. Выражение скалярного произведения через координаты векторов в ортогональном базисе принимает более простой вид, а именно, .
В ортогональном базисе скалярное произведение вектора a на базисный вектор равно , то есть, координаты вектора a находятся по формулам .
Ортогональный базис , в котором длина каждого базисного вектора равна 1, называется ортонормированным. В ортонормированном базисе координаты вектора x определяются по формулам , а скалярное произведение векторов равно .
Дата добавления: 2016-05-25; просмотров: 527;