Биохимические методы

Беда в том, что радикалы обладают такой высокой реакционной способностью, что изучать их обычными химическими методами невозможно: стандартные процедуры вроде хроматографии или центрифугирования совершенно бесполезны. Биохимические анализы позволяют, правда, определять конечные продукты реакций, в которых предполагается участие радикалов, но всегда остается вопрос, а действительно ли радикалы участвовали в процессе и какие именно. Очень важную роль при решении таких вопросов играет так называемый ингибиторный анализ. Классическим примером может служить применение фермента супероксиддисмутазы (СОД). Этот фермент, открытый Дж. Мак-Кордом и И.Фридовичем около тридцати лет назад, катализирует реакцию взаимодействия (дисмутации) двух супероксидных радикалов с образованием перекиси водорода и молекулярного кислорода. Открытие СОД совершило революцию в умах биохимиков: раз есть фермент, удаляющий свободные радикалы, специально вырабатываемый живыми клетками (и, как выяснилось, чрезвычайно широко распространенный в живой природе), то ясно, что и сами радикалы существуют в природе и почему-то их надо обязательно удалять. До этого мало кто думал, что в метаболизме живых организмов участвуют не только "настоящие" молекулы, но и свободные радикалы. Постепенно СОД стала широко использоваться во всех исследованиях, где изучают роль супероксида в том или ином процессе, будь то индивидуальная биохимическая реакция или развитие болезни у лабораторных животных или человека. Если добавление СОД тормозит изучаемый процесс, значит, для его протекания необходим супероксид-радикал и остается выяснить, в какой именно реакции этот радикал участвует. Ингибиторный анализ используется и для изучения реакций с участием других радикалов. Так для выяснения участия в каком-нибудь процессе реакций цепного окисления липидов, на которой мы подробнее остановимся позже, используют жирорастворимые "ловушки" липидных радикалов, которые "ведут" цепи окисления. К числу таких ловушек относятся токоферол (витамин Е) и некоторые синтетические соединения, например, трет-бутилгидрокситолуол (ионол). Водорастворимые радикалы эффективно "перехватываются" аскорбиновой или мочевой кислотой. Для "улавливания" радикалов гидроксила (HO·) используют маннитол или бензойную кислоту, а иногда - этанол. Необходимо отметить, что далеко не всегда ловушки специфичны: многие из них реагируют не только с радикалами, но и с достаточно активными молекулами.

Методы биофизики

"Самый прямой" метод изучения свободных радикалов – метод электронного парамагнитного резонанса (ЭПР). По наличию, амплитуде и форме сигналов (спектров) ЭПР можно судить о существовании непарных электронов в образце, определять их концентрацию, а иногда и выяснить, какова химическая структура радикалов, которые эти непарные электроны содержат. К прямым методам изучения радикалов можно отнести также метод хемилюминесценции (ХЛ). При взаимодействии радикалов друг с другом выделяется много энергии, которая в некоторых случаях испускается в виде фотонов (квантов света). Интенсивность такого свечения (ХЛ) пропорциональна скорости реакции, в которой участвуют радикалы и, следовательно – их концентрации. Надо отметить, что при всех достоинствах этих методов, в особенности метода ЭПР, их чувствительности оказывается зачастую недостаточной. В биологических системах скорости образования радикалов кислорода или липидных радикалов в мембранах не так уж велики, зато очень велики скорости исчезновения этих радикалов; поэтому концентрация радикалов в каждый данный момент времени (так называемая стационарная концентрация) зачастую так мала, что обнаружить их непосредственно методом ЭПР невозможно. Выход из положения заключается в том, что активные радикалы переводятся в неактивные, стабильные, которые регистрируются с помощью ЭПР. С этой целью к изучаемому образцу (например, к суспензии клеток, гомогенату ткани или раствору, где протекают реакции с участием свободных радикалов) добавляют особые вещества, называемые спиновыми ловушками (хотя "ловят" они, конечно не спины, а радикалы). Например, для "улавливания" радикалов гидроксила HO· используют фенилбутилнитрон (ФБН) (см. рис. 2). При взаимодействии ловушки с радикалом происходит присоединение радикала к ловушке с образованием нового, стабильного радикала, получившего название "спинового аддукта" (от английского слова add – добавлять, складывать). Сигналы ЭПР спиновых аддуктов разных радикалов слегка различаются по форме. Это позволяет идентифицировать радикалы, образующиеся в изучаемой системе. Для улавливания других радикалов (скажем, супероксида) используют другие ловушки. Поскольку спиновая ловушка "перехватывает" свободные радикалы, она тормозит (ингибирует) тот процесс, который этими радикалами вызывается, например, уменьшает повреждение живых клеток радикалами HO·. Таким образом, спиновые ловушки используются в двух целях: чтобы выяснить, какие радикалы образуются и какие процессы в клетке они вызывают.

Первичные радикалы

Основные радикалы, образующиеся в клетках - это радикалы кислорода (супероксид и гидроксильный радикал), монооксид азота, радикалы ненасыщенных жирных кислот, радикалы, образующиеся в окислительно-восстановительных реакциях (например, убихинол). Радикалы образуются также при действии ультрафиолетовых лучей и в ходе метаболизма некоторых чужеродных соединений (ксенобиотиков), в том числе некоторых препаратов, одно время применявшихся в качестве лекарств.








Дата добавления: 2016-05-16; просмотров: 587;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.