Задачу о надежности.
Пусть конструируется электронный прибор, состоящий из трех основных компонентов. Все компоненты соединены последовательно, поэтому выход из строя одной из них приводит к отказу всего прибора. Надежность (вероятность безотказной работы) прибора можно повысить путем дублирования каждого компонента. Конструкция прибора позволяет использовать запасных блоков для каждого j-того компонента, т.е. каждый компонент может содержать до блоков, соединенных параллельно. Общая стоимость прибора не должна превышать С долларов. Если j-тый компонент имеет штук соединенных параллельно блоков, то его надежность составляет и стоимость . Требуется определить количество блоков в каждом j-том компоненте , при котором надежность прибора максимальна, а стоимость прибора не превышает заданной величины С.
Построение ММ. По определению, надежность F прибора, состоящего из N последовательно соединенных компонентов, каждый из которых включает параллельно соединенных блоков, равна произведению надежности компонент. Тогда ММ имеет вид:
(7)
(8)
, (9)
Из физического смысла задачи следует, что , >0 для всех допустимых .
Введем дополнительную переменную - количество средств, израсходованных на дублирование компонент 1,2,… j-1.Тогда можно записать:
(10)
(11)
Из (10) следует: . Тогда с учетом (9) область допустимых значений будет иметь вид , а рекуррентные соотношения Беллмана принимают вид:
(12).
(13)
Покажем применение рекуррентных соотношений Беллмана для решения задачи (7)-(9), решаемых в порядке . Проводя преобразования, аналогичные преобразованиям задачи о загрузке рюкзака, получим:
Здесь , есть область изменения при фиксированном .
Дата добавления: 2016-05-16; просмотров: 953;