Интерференция световых волн

 

Интерференцией называется явление перераспределения энергии в пространстве при наложении когерентных волн.

Когерентными называются волны одного направления, с одинаковыми плоскостями колебаний светового вектора, одинаковой частотой и с постоянной во времени разностью фаз.

Когерентные волны можно получить, разделяя одну световую волну на две с помощью отражения и преломления света.

Условия наблюдения максимумов и минимумов интерференции определяются разностью фаз складываемых колебаний.

(46)

Разность фаз интерферирующих волн связана с оптической разностью хода

 

D = l2l1 ,

 

где l – оптическая дина пути световой волны. При этом l = S×n, где S – геометрическая длина пути световой волны в однородной среде с показателем преломления n. Кроме того, при нахождении l надо учитывать, что при отражении от оптически более плотной среды световая волна меняет фазу на p. В этом случае к оптической длине пути надо прибавить (или отнять) l0/2.

Связь разности фаз с оптической разностью хода дает общие условия наблюдения интерференционных максимумов и минимумов:

(47)

Рис. 6

 

Рассмотрим основные случаи интерференции

1. Интерференция наблюдается на экране, расположенном параллельно двум когерентным источникам в виде щелей (опыт Юнга, зеркала Френеля, бипризма Френеля) (Рис. 6).

L – расстояние от экрана до источников, отстоящих друг от друга на расстоянии d (d << L);

x – расстояние от центра интерференционной картины до k-ой интерференционной полосы.

 

 

Тогда (48)

 

       
 
 
   
 
 

 
 


2. Интерференция при отражении от тонких пленок. При падении света на тонкую пленку происходит отражение от обеих поверхностей пластинки. В результате возникают когерентные волны 1 и 2, которые могут интерферировать (рис. 7). При этом

 

, (49)

 

где d – толщина пленки, n – показатель преломления, a – угол падения, l0/2 – добавочная разность хода, учитывающая смену фазы на p при отражении 1-й волны от более плотной среды (пленки).

 

 

       
 
 
   
Рис. 8


3. Кольца Ньютона – пример полос равной толщины, наблюдаемых при отражении света от соприкасающихся друг с другом плоскопараллельной стеклянной пластинки и плосковыпуклой линзы с большим радиусом кривизны (рис. 8).

 

Тогда радиусы темных колец Ньютона в отраженном свете , (50) а радиусы светлых колец Ньютона в отраженном свете

. (51)

 

Здесь R – радиус кривизны линзы, n – показатель преломления вещества между линзой и пластинкой.

 








Дата добавления: 2016-05-16; просмотров: 598;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.007 сек.