ФИЗИКО-ХИМИЧЕСКИЕ СПОСОБЫ ЗАКРЕПЛЕНИЯ ГРУНТОВ.

Физико-химическое закрепление грунтов (изменение свойств грунтов) оснований производится в различных целях. В одних случаях необходимо общее окаменение массива искусственного основания, в других - достаточно только придать основанию водонепроницаемость. В соответствии с этим применяют цементацию, силикатизацию, битумизацию, электрозакрепление и термозакрепление грунтов.

Цементация грунтов — один из самых старых способов закрепления рыхлых крупнообломочных и крунопесчанных грунтов. Этот метод состоит в том, что закрепляемый грунт подается под давлением через специальныетрубкоинъекторы суспензия цемент — вода (цементное молоко). После окончания нагнетания, раствор постепенно твердеет и образует с грунтом прочное, неразмываемое основание. Недостаток этого метода — сравнительно ограниченная область его применения; для успешной цементации необходимо, чтобы размеры пор в грунте были по-крайней мере в 4 — 5 раз больше размеров частиц цемента. Такое соотношение позволяет применять цементацию только в крупнообломочных и крупнопесчаных грунтах и не дает возможности использовать ее в грунтах с более мелкими фракциями. Инъекторы для цементации грунтов состоят из трубки диаметром 19 — 38 мм. Трубка заканчивается коническим наконечником, облегчающим ее погружение. В нижней части трубки сделаны отверстия для выхода цементного молока. При небольшой глубине погружения инъекторы забивают в грунт, а при больших глубинах опускают в заранее пробуренные скважины. Перед тем как начать нагнетание цементного молока, грунт промывают чистой водой под напором, чтобы вынести наиболее мелкие фракции. Состав цементного молока (цемент — вода) колеблется в пределах от 1:10 до 1:0,4, в зависимости от степени водопоглощения грунта. Радиус закрепления в зависимости от размера пор колеблется в пределах 0,5 — 1,5 м. Давление, под которым подается цементное молоко, в среднем равно 0,025 — 0,1 МПа на каждый метр погружения.

Силикатизация грунтов применима в грунтах с коэффициентами фильтрации 2 — 80 м/сут, т. е. охватывает область средних, мелких и даже пылеватых песков. Основой силикатизации является нагнетание в грунт раствора жидкого стекла Na2O-nSiO2. Выпадающий в результате химических реакций гель кремниевой кислоты SiO2 связывает между собой частицы грунта подобно цементу. В различных грунтах по-разному используют метод силикатизации. Наибольшее распространение получил метод двухрастворнойсиликатизации: в грунт последовательно нагнетают раствор жидкого стекла и вслед за ним — раствор хлористого кальция СаСl2. В результате реакции образуется связывающий частицы грунта гель кремневой кислоты SiO2, гидрат окиси кальция Са(ОН2) и хлористый натрий NaCl. Однорастворная силикатизация заключается в том, что реакция в растворе, составленном из жидкого стекла и фосфорной кислоты Н3РО4, протекает медленно — в течение 4 — 10 ч, поэтому становится возможным нагнетание такого сложного раствора. Преимущество однорастворной силикатизации очевидно: вместо последовательного нагнетания двух растворов нагнетается только один. Однако прочность грунта, закрепленного двухрастворной силикатизацией, выше и доходит до 15—35—105 Па, в то время как прочность грунтов, закрепленных однорастворной силикатизацией, составляет только 4—5—10 Па. В лёссовых грунтах, в составе которых, как правило, уже есть соли кальция, возможно закрепление нагнетанием только одного раствора жидкого стекла. Предел прочности лёссовых грунтов после закрепления составляет примерно 6—8—10 Па. Радиус закрепления грунтов силикатизацией достигает 0,3 — 1 м и зависит от коэффициента фильтрации грунта.

Битумизация грунтов как метод закрепления грунта возможна горячая и холодная. При горячей битумизации в грунт распространен этот метод для создания водонепроницаемости в трещиноватых скальных грунтах. В этих случаях битум, разогретый только до 200 — 220 °С, тампонирует трещины в радиусе до 10 м. Для поддержания высокой температуры в битуме инъектор имеет внутреннюю трубку или стержень, изолированную от внешней трубки. Через внешнюю и внутреннюю трубку инъектора пропускается электрический ток, поддерживающий высокую температуру в битуме. Метод горячей битумизации требует для подачи битума высокого давления, доходящего до 2,5 — 3 МПа. Для устройства искусственных оснований более применима холодная битумизация, заключающаяся в том, что в грунт под давлением подается битумная эмульсия, состоящая из битума, расщепленного в воде при помощи эмульгатора на мельчайшие взвешенные частицы (примерно 60% битума и 40% воды). Введенная в грунт битумная эмульсия обладает большой подвижностью и заполняет поры грунта. При увеличении давлении вода отжимается дальше, а частички битума выполняют из эмульсии, слипаются в общую массу и плотней заполняют поры грунта. Кроме битума для закрепления грунта в последнее время стали применять синтетические смолы. Практика закрепления грунта показывает, что при наличии органических и неорганических кислот такие смолы затвердевают за несколько часов.

Электроосмотическое закрепление грунтов начинает получать все большее распространение и заключается в том, что в грунт параллельными рядами забивают электроды. Расстояние между электродами 0,6 — 1,0 м. Через электроды пропускается постоянный электрический ток напряжением 30 — 100 В. Глинистые грунты, подвергнутые обработке постоянным электрическим током, осушаются и уплотняются, причем процесс уплотнения необратим. Для удаления излишней воды из грунта электроды, служащие катодом, делают из полых трубок, через которые и откачивают воду. Если сделать полым также и анод, то через него можно вводить в грунт раствор хлористого кальция и тем самым усилить действие электрозакрепления грунта, превратив его в электрохимическое.

Смолизация — нагнетание водного раствора карбамидной смолы с добавкой соляной кислоты, щавелевой кислоты или хлористого аммония. Применяется для закрепления, повышения прочности и водонепроницаемости мелкозернистых песчаных грунтов.

Для глинистых грунтов, где нагнетание растворов невозможно, используется электрохимический способ закрепления, основанный на пропускании постоянного электрического тока через грунт, в который вводится раствор хлористого кальция, в результате чего грунт обезвоживается и уплотняется. Реакции обмена, происходящие при этом в приэлектродной зоне, также способствуют уплотнению и закреплению грунта. Электрохимическое закрепление подразделяется на электроосушение, электроуплотнение и электрозакрепление.

Для упрочнения просадочных лёссовых грунтов применяется термическое закрепление, осуществляемое обжигом закрепляемых грунтов газообразными продуктами горения топлива, имеющими температуру 700—1000°С. Наиболее эффективным является сжигание топлива непосредственно в толще закрепляемого грунта (рис.2). Стабилизация и закрепление неустойчивых водоносных грунтов достигается искусственным замораживанием грунтов

Рис. 1. Схема установки для силикатизации грунтов: 1 — цистерна с крепителем; 2 — цистерна с кислотой; 3 — насос «НД»; 4 — смеситель; 5 — пульт управления с регистрирующей аппаратурой; 6 — инъектор; 7 — отбойный молоток для погружения инъектора в грунт; 8 — контур закрепления.

Рис. 2. Схема установки для термического закрепления просадочных лёссовых грунтов сжиганием топлива непосредственно в скважине: 1 — просадочный грунт; 2 — непросадочный грунт; 3 — компрессор; 4 — трубопровод для холодного воздуха; 5 — ёмкость для жидкого горючего; 6 — насос для подачи горючего в скважину; 7 — трубопровод для горючего; 8 — фильтр; 9 — форсунка; 10 — затвор с камерой сгорания; 11 — скважина; 12 — зона термического закрепления грунта.

 








Дата добавления: 2016-05-11; просмотров: 1869;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.