ВАКУОЛИ РАСТИТЕЛЬНЫХ КЛЕТОК

Органоиды общего значения, имеющие одномембранный принцип строения и встречающиеся только в клетках растений.

Размер и количество: определяются возрастом клетки. В молодых клетках вакуоли возникают из мелких пузырьков, отщепившихся от ЭПС. По мере роста и дифференцировки клетки мелкие вакуоли сливаются друг с другом и образуют одну или несколько крупных вакуолей, занимающих до 80% объема всей клетки. В результате цитоплазма с ядром и органоидами оттесняется на периферию.

Структура: центральные вакуоли отделены от цитоплазмы одинарной мембраной – тонопластом, который сходен по толщине с плазмолеммой. Полость вакуоли заполнена клеточным соком. В состав клеточного сока входят неорганические соли, сахара, органические кислоты и их соли, другие низкомолекулярные вещества, а также некоторые высокомолекулярные соединения (например, белки).

Функции: 1) осморегуляция: благодаря полупроницаемости тонопласта и плазмолеммы сохраняется соответствующая молекулярная концентрация клеточного сока, т.е. вакуоль функционирует в качестве осмометра;

2) экскреторная: через тонопласт могут удаляться все водорастворимые продукты обмена (алкалоиды – никотин, кофеин; полифенолы);

3) запасающая: в клеточном соке накапливаются фосфаты K+, Na+, Ca2+, соли органических кислот (оксалаты, цитраты и др.), сахара и белки.

 

 

РИБОСОМЫ

 

Органоид, не имеющий мембранного строения. Это единственный органоид общего значения, который присутствует в клетках как прокариот, так и эукариот. Рибосомы впервые были описаны в 1955 г. Дж. Паладе (гранулы Паладе), который доказал, что они представляют собой рибонуклеопротеидные комплексы (РНП).

Химическая природа: РНП= р-РНК+белок.

На долю рибосом приходится 85% РНК, представленной в клетке.

Форма: рибосома имеет грибовидную форму, так как состоит из двух субъединиц: большой и малой, между ними располагается функциональный центр рибосомы (ФЦР), в котором во время биосинтеза белка (период трансляции) располагается и-РНК двумя своими триплетами и работает ферментативный комплекс, обеспечивающий сборку белковой молекулы из аминокислот.

  1 – малая субъединица рибосомы;     2 - большая субъединица рибосомы;
Размеры: 15 – 35 нм. Размер полной рибосомы прокариотических клеток – 20х17х17 нм, эукариотических – 25х20х20 нм.


Место образования: образование субъединиц рибосом происходит в ядрышках ядра. Сборка субъединиц в целостную рибосому осуществляется в цитоплазме при достижении концентрации ионов магния (Mg2+) 0.001М, если указанная концентрация уменьшается, происходит диссоциация субъединиц. Когда концентрация Mg2+ увеличивается в десять раз, достигая значения 0.01М, две рибосомы взаимодействуют друг с другом, образуя димер.

Локализация в клетке: рибосомы располагаются

 


Функция: синтез белка в клетке – это «фабрики по производству белка».

В процессе биосинтеза белка несколько рибосом (от 5 до 70) прикрепляются к и-РНК наподобие «нитки бус». Эта структура называется полирибосомой или полисомой, благодаря ей процесс сборки полипептидной цепи ускоряется во много раз.

 

 

КЛЕТОЧНЫЙ ЦЕНТР (ЦЕНТРОСОМА)

Органоид общего значения, не имеющий мембраны. Этот органоид обязателен для животных клеток, но отсутствует у высших растений, низших грибов и некоторых простейших. Центриоли обнаружили и описали Флеминг, 1875г., Бенеден, 1876г.

Локализация в неделящейся клетке: в самом центре клетки, рядом с ядром или комплексом Гольджи.

Размеры: длина 0,5 мкм, d=0,2мкм.

Структура центросомы: в состав клеточного центра входят две центриоли, расположенные под прямым углом друг к другу и образующие диплосому или центросому, окруженную зоной радиально отходящих тонких фибрилл – центросферой.

Строение центриолей: любая центриоль представляет собой полый цилиндр, стенка которого образована 9 триплетами микротрубочек – (9х3)+0. Вокруг каждой центриоли расположен бесструктурный или тонковолокнистый матрикс. Часто с материнской центриолью связаны некоторые дополнительные структуры – сателлиты, фокусы схождения микротрубочек, дополнительные микротрубочки, образующие вокруг центриолей зону центросферы.

ПР


 
 
Схема строения диплосомы: МЦ – материнская центриоль; ДЦ – дочерняя центриоль; НС – ножка сателлита; ГС – головка сателлита; МТ – микротрубочки; ФСМТ – фокусы схождения микротрубочек; ПР – придатки на дистальном конце материнской центриоли.


Перед делением клетки, в S-период интерфазы, происходит удвоение клеточного центра за счет самосборки микротрубочек. Способность центриолей удваиваться побудила к поискам в их составе нуклеиновых кислот. Оказалось, что в самих центриолях ДНК отсутствует, а РНК входит в состав центриолей, но ее природа и функциональная роль остаются совершенно неясными.

Функции: 1) в период деления клетки удвоенный клеточный центр принимает участие в образовании полюсов клетки и веретена деления,что обеспечивает равномерное распределение генетической информации во время деления клетки;

2) в интерфазу принимает участие в формировании микротрубочек – цитоскелета клетки;

3) при участии клеточного центра формируются реснички и жгутики.

 

МИТОХОНДРИИ

Органоиды общего значения, имеющие двумембранный принцип строения. Впервые Келликер обнаружил их в мышечных клетках в 1850 году.

Форма: в виде нитей, палочек, зерен.

Размеры: ширина 0,5 – 7 мкм.


Структура: наружная мембрана гладкая, внутренняя образует много складок в виде гребней – крист, направленных внутрь. Таким образом, формируются два пространства: первое – межмембранное около 10 – 20 нм, оно заполнено водным раствором. Второе, ограниченное внутренней мембраной, носит название «матрикс». Матрикс имеет желеобразную консистенцию, в нем располагаются собственная ДНК, рибосомы, большое число белков-ферментов, используемых митохондриями на собственные нужды. На основании этого митохондрии называют полуавтономными органоидами клетки,они способны к самовоспроизведению (делением пополам), живут около 10 дней, после чего подвергаются разрушению.

Главная роль митохондрий в клетке определяется структурой крист. В митохондриях происходят кислородное расщепление углеводов (цикл трикарбоновых кислот) и каскадный перенос электронов на кислород. Чем активнее функционирует клетка, тем больше в ней митохондрий, а в митохондриях крист. В клетках печени их до 2,5 тыс., в клетках мышечной ткани – 1,5 тыс.

 

Функция: синтез АТФ – макроэнергетического соединения, являющегося основным поставщиком энергии в клетке. Часто митохондрии называют «энергетическими станциями клетки».

 

 

ПЛАСТИДЫ

Органоиды общего значения, имеющие двумембранный принцип строения. Встречаются только в клетках растений. Впервые пластиды были описаны еще Антонио ван Левенгуком в1676году.

Виды: 1) хлоропласты – зеленые пластиды, содержащие в большом количестве пигмент хлорофилл, а также каротиноиды;

2)хромопласты – красно-желтые пластиды, содержащие только пигменты из группы каратиноидов (каротин и ксантофилл);

3)лейкопласты – бесцветные пластиды.

Пигменты фотосинтеза: основными фотосинтетическими пигментами у высших растений и зеленых водорослей являются:

♦ Хлорофилл – А (зелено-голубой) = C55H72O5N4Mg;

♦ Хлорофилл – В (желто-зеленый) = C55H70O6N4Mg;

Каротиноиды:

♦ Каротин (оранжево-красные) = С40Н56;

♦ Ксантофилл (желтые) = С40Н56О2.

В процессе фотосинтеза эти пигменты способны поглощать электромагнитные волны только видимого света.

Оба хлорофилла А и В – интенсивно аккумулируют лучи красного спектра и частично – голубого и фиолетового. Они не способны поглощать излучение зеленого спектра, поэтому такие волны они отражают и визуально кажутся зелеными пигментами. Каротиноиды поглощают лучи голубого, зеленого и фиолетового спектра. Каротины отражают «оранжевые лучи», поэтому кажутся оранжевыми включениями, ксантофиллы отражают излучение желтого спектра, следовательно, они – желтые пигменты. При интенсивном освещении каротиноиды защищают молекулы хлорофилла от возможного фотоокисления.

Строение хлоропласта

Форма: дисковидная.

Размеры: ширина 2 – 4 мкм.

1 – наружная мембрана; 2 – межмембранное пространство; 3 – внутренняя мембрана; 4 – тилакоиды; 5 – граны; 6 – пластоглобулы; 7 – ДНК; 8 – рибосомы; 9 – матрикс
.


Структура хлоропластов: хлоропласт отграничен двумя мембранами, а внутри находится студенистое вещество – строма. Наружная мембрана гладкая, внутренняя образует много складок, напоминающих стопки монет – граны.

В гранах заключены пигменты, акцепторы и доноры электронов, принимающие участие в световой фазе фотосинтеза, в ходе которой происходит реакция фотофосфорилирования и образуется АТФ. Кроме того, продуктами световой фазы являются: О2 и Н2О, НАДФ•Н2.

Как и в митохондриях, в хлоропластах создаются два пространства: первое называется межмембранным – около 20 – 30 нм, оно заполнено водянистым содержимым. Второе, отграниченное внутренней мембраной, носит название «строма». В строме располагаются собственная ДНК, рибосомы, белки-ферменты, которые принимают непосредственное участие в темновой фазе фотосинтеза. Продуктом темновой фазы является глюкоза – С6Н12О6 .

Пластиды, как и митохондрии, способны удваиваться, имеют собственный аппарат по синтезу белка, следовательно, являются полуавтономными органоидами растительных клеток.

Пластиды обладают функциональной пластичностью и способны к видоизменениям: лейкопласты → хлоропласты → хромопласты. Лейкопласты можно считать предшественниками хлоропластов.

Хлоропласты – это активный фотосинтетический аппарат клетки.

Хромопласты представляют собой неактивные дегенерирующие пластиды.

Функции:

♦ хлоропласты играют активную роль в первичном синтезе углеводов (синтезе глюкозы), который называется фотосинтезом. Иногда принимают участие во вторичном – синтезе крахмала. Широко представлены в клетках зеленых органов растений (листья, молодые стебли, нераспустившиеся бутоны).

♦ лейкопласты – эти пластиды широко представлены в клетках подземных органов растений (корни, клубни, луковицы и др.), так как они выполняютзапасающую функцию.

♦ хромопласты обнаруживаются в клетках лепестков цветов, созревших плодов. Создавая яркую окраску, они способствуютпривлечениюнасекомыхдля опыления цветков, животных и птицдля распространения плодов и семян в природе.

 

 








Дата добавления: 2016-02-16; просмотров: 2708;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2025 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.018 сек.