Центробежные вентиляторы

МАШИНЫ ДЛЯ ТРАНСПРОРТА ГАЗОВ

 

Центробежные вентиляторы.

Центробежные компрессоры

Осевые компрессоры.

Ротационные компрессоры.

Вакуум-насосы.

Сравнение и выбор компрессорных машин.

 

Центробежные вентиляторы

К центробежным компрессорам относят:

- вентиляторы;

- турбогазодувки;

- турбокомпрессоры.

 

Типы вентиляторов:

Центробежные вентиляторы делятся на вентиляторы:

- низкого давления < 100 мм вод. ст.),

- среднего давления = 100—300 мм вод. ст.)

- высокого давления (Р = 300—1000 мм вод. ст.).

Центробежными вентиляторами называют лопастные компрессорные машины, имеющие степень повышения давления 1,15. Характерным признаком центробежного вентилятора является повы­шение давления газа за счет центробежной силы, возникающей при его вращении вместе с рабочим колесом. Центробежные вентиляторы широко используются в промышлен­ности для вентиляции помещений, отсасывания вредных веществ в технологических процессах. В теплоэнергетических установках цент­робежные вентиляторы применяются для подачи воздуха в топочные камеры котлов, перемещения топливных смесей в системах пылёприготовления, отсасывания дымовых газов и транспортирования их по дымовым трубам в атмосферу.

Аэродинамическая схема центробежного вентилятора :

 

 

 

 

1-рабочее колесо;2-входной патрубок;3-спиральный отвод.

 

Входной патрубок служит для подвода поступающего в вентиля­тор газа к рабочему колесу. Входные патрубки имеют осесимметричную форму: цилиндрическую, коническую, тороидальную, комбинированную. Рабочее колесо осуществляет передачу энергии от привода к газу, перемещаемому вентилятором. Оно обычно состоит из переднего и заднего дисков, между которыми с одинаковым шагом установ­лены лопатки.

Рационально сконструированный вентилятор характери­зуется возможно меньшими массой, металлоемкостью и габаритами, высокой экономичностью и надежностью, а также технологичностью конструкции и наименьшими возможными эксплуатационными расходами. Особые требования предъявляются к конструкции корпуса и ра­бочего колеса.

Рабочее колесо должно быть тщательно отбалансировано. Прочность и жесткость колеса зависят от кон­струкции и материала, из которого оно выполнено. С увеличением ширины колеса прочность и жесткость его снижаются. Конструктивно могут быть барабанными (окружная скорость до 30—40 м/с), кольцевыми (окружная скорость допус­кается до 60 м/с), коническими бездисковыми одно- и многодисковыми.

Жесткость и прочность рабочего колеса во многом определяются способом соединения лопаток с дисками. Наибольшее распространение получили клепаные коле­са, которые более трудоемки при изготовлении, но отли­чаются большой прочностью. Соединение на шипах ме­нее трудоемко при изготовлении. Величина зазора между входным патрубком и перед­ним диском колеса, как уже было отмечено, оказывает существенное влияние на КПД вентилятора. С увеличе­нием зазора количество воздуха, перетекающего через него со стороны нагнетания на сторону всасывания, воз­растает и подача вентилятора уменьшается.

Вентиляторы изготавливают одностороннего и дву­стороннего всасывания правого и левого вращения. Если смотреть со стороны входа воздуха, то вентилятор, рабочее колесо которого вращается по часовой стрелке, называется вентилятором правого вращения, против ча­совой стрелки — левого вращения На вентилятор дву­стороннего всасывания следует смотреть со стороны всасывания, свободной от привода

Вентиляторы соединяются с электродвигателями од­ним из следующих способов:

ü рабочее колесо вентилятора закреплено непосредст­венно на валу электродвигателя;

ü с помощью эластичной муфты;

ü клиноременной передачей с постоянным передаточ­ным отношением;

ü регулируемой бесступенчатой передачей через гид­равлические или индукторные (электрические) муфты скольжения.

Единая общепринятая классификация радиальных вентиляторов до сих пор не разработана. Однако вен­тиляторы можно классифицировать по отдельным при­знакам: назначению, создаваемому давлению, быстро­ходности, компоновке и т. д.

Радиальные вентиляторы, применяемые практически во всех отраслях народного хозяйства, можно разде­лить на две большие группы: вентиляторы общего на­значения и вентиляторы специального назначения.

Вентиляторы общего назначения предназначены для перемещения воздуха и других газовых смесей, агрес­сивность которых по отношению к углеродистым сталям обыкновенного качества не выше агрессивности воздуха с температурой до 80°С, не содержащих пыли и других твердых примесей в количестве более 100 мг/м3, а так­же липких веществ и волокнистых материалов. Для вентиляторов двухстороннего всасывания с расположе­нием ременной передачи в перемещаемой среде темпе­ратура перемещаемой среды не должна превышать 60 °С. Вентиляторы применяют в системах вентиляции и воздушного отопления производственных, обществен­ных и жилых зданий, а также для других санитарно-технических и производственных целей. Серийно выпус­кают вентиляторы номеров от 2,5 до 20.

.Иногда с целью увеличения срока службы лопаток рабочего колеса, их поверхности навариваются износо­устойчивыми твердыми сплавами. С этой же целью обе­чайка спирального корпуса может быть покрыта внутри броневыми плитами.

В конструкциях коррозионно-стойких вентиляторов, предназначенных для перемещения агрессивных смесей, применяются материалы, стойкие к этим смесям (нержа­веющая сталь, титановые сплавы, винипласт, полипропи­лен), либо их проточная часть напыляется антикорро­зионными покрытиями. Такими материалами являются нержавеющая сталь марки 12Х18Н10Т и титановый сплав ВТ 1-0.

Область применения вентиляторов из нержавеющей стали резко ограничена их недостаточно высокими анти­коррозионными свойствами. Для ряда агрессивных сред срок службы этих вентиляторов составляет 4—6 мес., а иногда и меньше.

Вентиляторы специального назначения применяются для работы в системах пневмотранспорта; для переме­щения среды, содержащей агрессивные вещества, газов с высокой температурой, газопаровоздушных взрыво­опасных смесей и т. д. Эти вентиляторы, в свою очередь можно, разделить на пылевые коррозионно-стойкие, искрозащищенные, тягодутьевые, малогабаритные, су­довые, шахтные, мельничные и т. д.

Вентиляторы, предназначенные для перемещения воз­духа с различными механическими примесями, назы­ваются пылевыми. В обозначении этих вентиляторов добавлена буква П.

Пылевые вентиляторы типа ЦП7-40 предназначены для перемещения невзрывоопасных неабразивных пыле-газовоздушных смесей, агрессивность которых по отно­шению к углеродистой стали обыкновенного качества не выше агрессивности воздуха, с температурой не выше 80 °С, не содержащих липких веществ и волокнистых материалов и с содержанием механических примесей в перемещаемой среде до 1 кг/м3.

Пылевые вентиляторы применяются для удаления древесных стружек, металлической пыли от станков, а также в системах пневмотранспорта зерна и для дру­гих целей. Чтобы транспортируемые материалы не за­стревали в рабочем колесе и корпусе, число лопатоки меры защиты от искрообразования как при нормаль­ной работе, так и при возможном кратковременном тре­нии рабочего колеса о корпус вентилятора. Эти венти­ляторы разработаны на основе алюминиевых сплавов с антистатическим пластмассовым покрытием. Вид по­крытия— графитонаполненный полиэтилен или графито-наполненный пентапласт, — выбирается в зависимости от характеристики -перемещаемых сред, т. е. от их спо­собности противостоять коррозионному воздействию сред.

Вентиляторы из алюминиевых сплавов выполняются по конструктивному исполнению 1 (ГОСТ 5976—73 с изм.) и комплектуются взрывозащищенными электро­двигателями. В соответствии с техническими условиями они предназначены для перемещения некоторых газо­паровоздушных взрывоопасных смесей, не вызывающих ускоренной коррозии материалов и покрытий проточной части вентиляторов, не содержащих взрывчатых ве­ществ, взрывоопасной пыли, окислов железа, добавоч­ного кислорода, липких веществ и волокнистых мате­риалов, с запыленностью не более 100 мг/м3 и темпе­ратурой не выше 80°С. Температура окружающей среды от —40 до 40°С (до 45°С для тропического исполнения).

Вентиляторы из алюминиевых сплавов нельзя при­менять для перемещения газопаровоздушных смесей от технологических установок, в которых взрывоопасные вещества нагреваются выше температуры их самовос­пламенения или находятся под избыточным давлением. Их также не разрешается использовать в качестве хи­мически стойких вентиляторов. Технические данные и область применения таких вентиляторов более подробно приведены в соответствующих технических условиях. В ТУ 22-4942-81 приведен перечень смесей, для пере­мещения которых предназначены эти вентиляторы.

Вентиляторы из титанового сплава могут использо­ваться во всех средах, где происходит пассивация по­верхности в результате образования окислов, гидридов и сульфоокисных соединений титана. Такие вентиляторы нельзя применять в газовоздушных средах, содержащих пары фтористоводородной и плавиковой кислот, фтора и брома, а также сухие хлор и йод. Однако следует от­метить, что решить проблему борьбы с коррозией ти­тановые вентиляторы не могут, так как промышленность выпускает их в ограниченном количестве.

Принципиально новые возможности открываются в связи с применением технологии напыления порош­ковых полимерных материалов в электростатическом поле. При этом нет необходимости в изменении техно­логии изготовления вентиляторов. Достаточно на за­ключительном технологическом этапе заменить процесс их окраски жидкими лакокрасочными материалами про­цессом напыления полимерных порошков.

Перемещение взрывоопасных газовых смесей венти­ляторами общего назначения недопустимо, так как при трении деталей рабочего колеса о корпус возможно по­явление искр, способных поджигать эти смеси. Следо­вательно, для перемещения таких смесей должны при­меняться вентиляторы, изготовленные из материалов, ко­торые при трении или соударении подвижных частей с неподвижными исключали бы возможность появления искр.

Вентиляторы из разнородных металлов нельзя при­менять для перемещения парогазовоздушных смесей, со­держащих добавочный кислород, а также для переме­щения смесей от технологических установок, в которых взрывоопасные вещества нагреваются выше температу­ры их самовоспламенения или находятся под избыточным давлением. Для перемещения смесей, взрывающихся от удара, вентиляторы применять нельзя. (В этих случаях исполь­зуют эжекторы.)

В зависимости от применения различают два типа тягодутьевых вентиляторов: дымососы и дутьевые.

Дымососы применяют для отсасывания дымовых га­зов с температурой до 200 °С из топок пылеугольных котлоагрегатов. Поскольку газы содержат твердые час­тицы золы, вызывающие значительный износ деталей дымососа, лопатки рабочего колеса выполняют утолщен­ными, а внутреннюю поверхность обечайки корпуса по­крывают броневыми листами. Ходовая часть дымосо­сов имеет охлаждающий элемент в виде термомуфты или змеевика охлаждения масла в узле подшипников. По­этому корпуса подшипников ходовой части дымососов изготовляют в виде литых или сварных коробок, внутри которых находится масло, охлаждаемое проточной во­дой, циркулирующей по змеевику.

Дутьевые вентиляторы предназначены для подачи воздуха в топочные камеры котлоагрегатов тепловых электростанций или крупных промышленных котельныхВентиляторы высокого давления создают полное дав­ление свыше 3000 Па.

Рабочие колеса вентиляторов, создающих давление до 1000 Па, как правило, имеют лопатки, загнутые назад, так как они более эффективны. Полное давление более 10000 Па могут создавать лишь вентиляторы малой быстроходности с узкими рабо­чими колесами, напоминающими компрессорные. Их окружная скорость при соответствующем конструктив­ном исполнении может достигать 200 м/с. Такие венти­ляторы находят применение в системах с небольшими расходами воздуха и значительным сопротивлением.

По быстроходности вентиляторы делят на вентиля­торы большой (ns>60), средней (я5=30-т-60) и малой (/is<30) быстроходности.

Вентиляторы большой быстроходности имеют широ­кие рабочие колеса с небольшим числом загнутых назад лопаток. Коэффициент давления г|з<;0,9. Максимальный КПД может достигать 0,9.

Вентиляторы малой быстроходности имеют неболь­шие диаметры входа, довольно узкие рабочие колеса, небольшую ширину и раскрытие спирального корпуса. Лопатки колеса могут быть загнуты вперед и назад. КПД этих вентиляторов не превышает 0,8.

В зависимости от компоновки вентиляторы могут быть разделены на переносные, полустационарные и ста­ционарные.

Переносные вентиляторы изготовляются с односто­ронним входом и имеют цельную конструкцию (ходовая часть, корпус, а иногда и электродвигатель монтируют­ся на общей жесткой стойке). Простота монтажа и де­монтажа таких вентиляторов является существенным их преимуществом перед другими вентиляторами. К недостаткам переносных вентиляторов следует отнести отсут­ствие у них устройств для регулирования, что снижает их эксплуатационные качества. Кроме того, для осмотра и ремонта рабочего колеса эти вентиляторы нужно от­соединить от сети. Такую компоновку имеют обычно вен­тиляторы общего назначения.

Полустационарные вентиляторы делают с одно- и двухсторонним всасыванием. Ходовая часть и электро­двигатель этих вентиляторов монтируются на общей раме. Корпус присоединяется к раме или устанавли­вается непосредственно на фундаменте с расположением выходного отверстия в любом нужном направлении. Ре­гулирование подачи осуществляется с помощью направ­ляющего аппарата. Для привода могут быть использо­ваны многоскоростные электродвигатели.

Характерной особенностью конструкции полустацио­нарных вентиляторов является то, что осмотр и ремонт их производятся без отсоединения от сети Эти вентиля­торы применяются для главного и шурфового проветри­вания шахт и рудников, в качестве дымососов и дутье­вых вентиляторов, а также для общепромышленного назначения.

Стационарными выполняются крупные шахтные и рудничные вентиляторы и дымососы ТЭЦ и наболев крупные вентиляторы общего назначения.

Конструктивной особенностью стационарных вентиля­торов является то, что корпус, ходовая часть, стойка и электродвигатель взаимно связаны только фундамен­том. Регулирование осуществляется осевыми или упро­щенными направляющими аппаратами. Корпус стацио­нарного вентилятора устанавливается только в одном определенном положении. При свободном выходе воз­душного потока в атмосферу к выходному отверстию вентилятора присоединяют диффузор. Стационарные вен­тиляторы менее металлоемки, но монтаж их более сло­жен и требует больших первоначальных затрат. Такие установки определяются только при большом сроке их службы. Осмотр и ремонт их осуществляются без отсое­динения от сети.

2.Центробежные компрессоры

В центробежных компрессорах (турбокомпрессорах) давление газа повышается при непрерывном его дви­жении через проточную часть машины в результате ра­боты, которую совершают лопатки рабочего колеса компрессора. Центробежные компрессоры применяются для сжатия газов до давления 0,8МПа. По срав­нению с поршневыми центробежные компрессоры имеют ряд преимуществ. Вследствие отсутствия возвратно-по­ступательного движения частей они не требуют тяже­лого фундамента; ротор их вращается с постоянной угловой скоростью, а движущиеся детали соприкасают­ся с неподвижными деталями только в подшипниках, что позволяет использовать более дешевые быстроход­ные двигатели. Центробежные компрессоры более ком­пактны. Основной недостаток центробежных компрессо­ров по сравнению с поршневыми заключается в том,

 

 

 

Рис.1 Схема четырехступенчатого турбокомпрессора

что степень повышения давления в одной ступени компрессора степень сжатия невелика и составляет не более 1,2.

Для получения высокой степени сжатия газа ис­пользуют несколько ступеней компрессора. Конструк­тивно это обеспечивается установкой на одном валу не­скольких рабочих колес, располагаемых в одном кор­пусе. В этом случае газ поступает в следующую сту­пень по каналам, образованным лопатками направляю­щего аппарата.

Общая степень сжатия центробежного компрессора определяется степенью сжатия его отдельных ступе­ни и определяется отношением давления р2 на выходе из компрессора к давлению p1 на входе. При сжатии легких газов до значительных давлений требуется большое число сту­пеней. Поэтому для обеспечения требуемой жесткости вала необходимо иметь многокорпусную машину. Цент­робежные компрессоры, как правило, представляют со­бой многоступенчатую машину.

Основными элементами центробежного компрессора (рис. 18.1) являются: подводящее устройство, рабочее колесо 1 с лопастями 2 и диффузор (кольцевой отвод) 3. Газ, находящийся в рабочем колесе между лопастями, при вращении рабочего колеса получает энергию от лопастей и вращается вместе с ними. При этом возникают центробежные силы, под их действием газ выбрасывается из колеса в диф­фузор, в котором скорость его снижается, а давление увеличивается. Для повышения эффективности работы диффузора по превращению кинетической энергии в потенциальную предназначены лопатки 4, упорядочивающие движение газа. Из диффузора газ, пройдя направ­ляющий аппарат 5, поступает на прием следующей ступени компрессора. Так как под действием центробежных сил газ в рабочем колесе дви­жется от центра к периферии, то в зонах, расположенных у оси вращения, давление снижается и происходит всасывание газа.

 

 

Рис.2 Схема ступени центробежного компрессора

 

1 — рабочее колесо; 2 — лопатки; 3 — кольцевой отвод; 4 — диффузорные лопатки

холодиль­ника, к недостаткам — низкий КПД холодильника.

 

Известно, что при сжатии газ нагревается, поэтому при использовании многоступенчатых компрессоров не­обходимо решить проблему охлаждения. Существуют два способа охлаждения: внутренний и внешний. При внешнем охлаждении газ, прежде чем попадает в сле­дующую ступень, проходит через холодильник, а при внутреннем охлаждении корпус холодильника имеет «рубашку», через которую прокачивается охлаждаю­щаяся вода. Обычно корпус холодильника представля­ет собой органически связанную с кожухом турбокомп­рессора часть конструкции.

Большинство современных машин имеет внешнее охлаждение. Промежуточные холодильники присоединя­ются либо к нижней части корпуса компрессора (рис. 5.), либо к обеим частям корпуса. Охлаждамый газ протекает в межтрубном простран­стве холодильника, а в трубах протекает ох-

даю­щая вода.

 

 

Рис.3. Схема подключения промежуточного холодильника к нижней части корпуса ком­прессора

 

 

При присоединении холодильника к нижней части корпуса газ из компрессора по улитке 1 попадает в хо­лодильник 2. Пройдя трубный пучок 3, газ направляет­ся в следующую ступень. Охлаждающая вода подво­дится в трубный пучок через патрубок 4 и отводится через патрубок 5. К достоинствам такой компоновки относится удобство монтажа и обслуживания

Повысить КПД можно присоединением холодильника к обеим частям корпуса.

По сравнению с внутренним охлаждением компрессо­ров основным преимуществом внешнего охлаждения яв­ляется более интенсивное охлаждение газа, так как площадь поверхности охлаждения промежуточного хо­лодильника значительно больше, чем у водяной ру­башки.

Наиболее простыми по конструкции являются одно­ступенчатые центробежные компрессоры, на которых хо­лодильники не монтируются.

Часто центробежные компрес­соры с внешним охлаждением используют для сжатия воздуха для пневматического оборудования и инструментов. Давление нагнетания в этих машинах составляет 0,6—0,9 МПа.

При эксплуатации центробежных компрессоров час­то возникает необходимость изменения их подачи в весьма широких пределах. Помимо этих требований не­обходимо обеспечивать также определенную зависи­мость между давлением и подачей. Так, например, для работы пневматических инструментов необходимо под­держивать в сети определенное давление независимо от изменения подачи. Для компрессоров, нагнетающих воздух в доменные печи, требуется поддержание задан­ной подачи при изменении давления, которое зависит от сопротивления слоя шихты в печи, толщина которо­го изменяется в зависимости от хода технологического процесса.

Регулирование центробежного компрессора по суще­ству является изменением положения рабочей точки. Это изменение можно осуществлять изменением либо характеристики компрессора, либо характеристики сети.

Наиболее распространенными способами регулирова­ния работы компрессоров являются: изменение часто­ты вращения ротора, изменение проточной части и дрос­селирование.

Если посмотреть на напорную характеристику 4 Центробежного компрессора (рис.6), то можно уви­деть, что с уменьшением подач и происходит постепен­ное сжатие газа до давления ркр. Дальнейшее умень­шение подачи приводит к уменьшению давления. Теоретически оно должно падать вдоль

пунктирной линии. На практике этого не происходит. Как только давле­ние достигает значения ркр, периодически происходит

возврат газа из области нагнетания область всасывания, сопровождающийся интенсивными ударами, часто­та которых зависит от давления сжатия, плотности га­зов, емкости сети и т. д. Это явление называется помпажем в компрессоре. Точка на характеристике, в ко­торой начинается помпаж, называется границей помпажа. При большом сжатии газа при помпаже возни­кают такие удары, что эксплуатация турбокомпрессора становится невозможной.

 

 

Рис.4 Напорная характе­ристика центробежного комп­рессора и линии регулирова­ния

/—для p = const, 2 —для p=/(Q), 3 — для Q = const

 

 

При отборе потребителем небольших количеств га­за, когда подача компрессора меньше критической и лежит в помпажной зоне, необходимо применять антипомпажное регулирование, сущность которого состоит в следующем. Если требуемая подача компрессора Qi меньше QKp, то компрессор настраивают на подачу Q2, которая больше QKp и лежит в устойчивой зоне. Раз­ность расхода, равная Q2—Qi> перепускается из линии нагнетания в линию всасывания или выбрасывается в атмосферу. Антипомпажное регулирование осуществля­ется только в автоматическом режиме специальными антипомпажными регуляторами. Основное отличие ре­гулирования турбокомпрессоров от регулирования поршневых компрессоров заключается в том, что изме­нение давления, под влиянием которого должен пере­ставляться регулятор, сравнительно невелико. Поэтому в большинстве случаев приходится прибегать к вспомо­гательным устройствам. Обычно такими вспомогатель­ными устройствами являются либо масляные сервомоторы, либо мультипликаторы, когда регулирование свя­зано с изменением подачи.

Случаю, когда компрессор должен обеспечивать по­стоянное давление независимо от расхода, будет отве­чать характеристика, соответствующая на рис. 6 пря­мой /; а случаю, когда расход при изменяющемся дав­лении постоянен, — прямая 3.

Помимо отмеченных основных случаев возможен и третий, когда требуется регулирование давления нагне­тания в зависимости от подачи. В этом случае для под­держания определенного давления у потребителя не­обходимо регулировать давление газа за компрессором. Требуемая характеристика компрессора соответствует кривой 2.На практике выбор способа регулирования зависит от конструкции компрессора и типа привода. Если комп­рессор имеет привод с регулируемой частотой враще­ния, то это позволяет регулировать частоту вращения ротора компрессора. При повышении частоты враще­ния ротора конечное давление и мощность увеличива­ются, при ее уменьшении давление и мощность снижа­ются. Регулирование изменением частоты вращения ро­тора является наиболее точным и экономичным.

Для центробежных компрессоров, имеющих в каче­стве привода асинхронный двигатель, чаще всего при­меняют регулирование дросселированием газа на вса­сывании. При этом способе регулирования с помощью дроссельной заслонки снижается давление всасывания в компрессор, в результате чего достигается снижение давления нагнетания до требуемого значения. Давление во всасывающем трубопроводе перед дроссельной за­слонкой остается постоянным.

Регулирование изменениями в проточной части цент­робежного компрессора заключается в установке перед входом газа в рабочее колесо лопаток, снабженных ме­ханизмом поворота, и повороте лопаток диффузора. Этот способ регулирования основан на том, что если поток газа направляющими лопатками перед входом в рабочее колесо предварительно поворачивается в на­правлении вращения колеса, то степень сжатия будет ниже, чем при радиальном входе, и наоборот. Этот спо­соб не получил до настоящего времени широкого рас­пространения из-за значительного усложнения конст­рукции компрессора.

Осевые компрессоры

 

Корпус осевого вентилятора (рис. 12.4) выполнен в виде короткого цилиндрического патрубка, в котором вращается рабочее колесо. Воздух движется прямотоком, т. е. вдоль оси вала. Вследствие прямоточного движения газа и обтекаемой формы лопаток к. п. д. осевых вентиляторов значительно выше, чем для центробежных. Осевые вентиляторы могут работать с реверсированием, т.е. с изменением направления потока воздуха на обратное.

 

 

Рис. 12.4 Осевой вентилятор и компрессор соответственно.

 

Осевой компрессор (рис. 7-39) представляет собой по существу много­ступенчатый осевой вентилятор. В корпусе 1 вращается цилиндрический ротор 2с рабочими лопатками 3. Рабочие лопатки вращаются между закрепленными в корпусе неподвижными лопатками 4, которые служат направляющим аппаратом для газа при переходе его от одной ступени рабочих лопаток к другой. Зазор между лопатками и корпусом незначителен (до 0,5 мм).

В осевых компрессорах достигается высокий к. п. д. и конечное избыточное давление газа до 6 ат. Эти компрессоры имеют непосредственный привод от быстроходных газовых турбин.

 








Дата добавления: 2016-04-06; просмотров: 2982;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.055 сек.